Cargando…
Kernel Temporal Differences for Neural Decoding
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representation...
Autores principales: | Bae, Jihye, Sanchez Giraldo, Luis G., Pohlmeyer, Eric A., Francis, Joseph T., Sanchez, Justin C., Príncipe, José C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381863/ https://www.ncbi.nlm.nih.gov/pubmed/25866504 http://dx.doi.org/10.1155/2015/481375 |
Ejemplares similares
-
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
por: Li, Lin, et al.
Publicado: (2014) -
Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization
por: Pohlmeyer, Eric A., et al.
Publicado: (2014) -
Neural Decoders Using Reinforcement Learning in Brain Machine Interfaces: A Technical Review
por: Girdler, Benton, et al.
Publicado: (2022) -
Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy
por: Wickstrøm, Kristoffer K., et al.
Publicado: (2023) -
Decoding neural responses to temporal cues for sound localization
por: Goodman, Dan FM, et al.
Publicado: (2013)