Cargando…

Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel

Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-ga...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaydman, Mark A, Kasimova, Marina A, McFarland, Kelli, Beller, Zachary, Hou, Panpan, Kinser, Holly E, Liang, Hongwu, Zhang, Guohui, Shi, Jingyi, Tarek, Mounir, Cui, Jianmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381907/
https://www.ncbi.nlm.nih.gov/pubmed/25535795
http://dx.doi.org/10.7554/eLife.03606
_version_ 1782364531606945792
author Zaydman, Mark A
Kasimova, Marina A
McFarland, Kelli
Beller, Zachary
Hou, Panpan
Kinser, Holly E
Liang, Hongwu
Zhang, Guohui
Shi, Jingyi
Tarek, Mounir
Cui, Jianmin
author_facet Zaydman, Mark A
Kasimova, Marina A
McFarland, Kelli
Beller, Zachary
Hou, Panpan
Kinser, Holly E
Liang, Hongwu
Zhang, Guohui
Shi, Jingyi
Tarek, Mounir
Cui, Jianmin
author_sort Zaydman, Mark A
collection PubMed
description Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the I(Ks) current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of I(Ks) (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001
format Online
Article
Text
id pubmed-4381907
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-43819072015-04-03 Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel Zaydman, Mark A Kasimova, Marina A McFarland, Kelli Beller, Zachary Hou, Panpan Kinser, Holly E Liang, Hongwu Zhang, Guohui Shi, Jingyi Tarek, Mounir Cui, Jianmin eLife Biophysics and Structural Biology Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the I(Ks) current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of I(Ks) (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001 eLife Sciences Publications, Ltd 2014-12-23 /pmc/articles/PMC4381907/ /pubmed/25535795 http://dx.doi.org/10.7554/eLife.03606 Text en © 2014, Zaydman et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biophysics and Structural Biology
Zaydman, Mark A
Kasimova, Marina A
McFarland, Kelli
Beller, Zachary
Hou, Panpan
Kinser, Holly E
Liang, Hongwu
Zhang, Guohui
Shi, Jingyi
Tarek, Mounir
Cui, Jianmin
Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title_full Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title_fullStr Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title_full_unstemmed Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title_short Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
title_sort domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the iks ion channel
topic Biophysics and Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381907/
https://www.ncbi.nlm.nih.gov/pubmed/25535795
http://dx.doi.org/10.7554/eLife.03606
work_keys_str_mv AT zaydmanmarka domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT kasimovamarinaa domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT mcfarlandkelli domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT bellerzachary domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT houpanpan domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT kinserhollye domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT lianghongwu domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT zhangguohui domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT shijingyi domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT tarekmounir domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel
AT cuijianmin domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel