Cargando…
Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-ga...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381907/ https://www.ncbi.nlm.nih.gov/pubmed/25535795 http://dx.doi.org/10.7554/eLife.03606 |
_version_ | 1782364531606945792 |
---|---|
author | Zaydman, Mark A Kasimova, Marina A McFarland, Kelli Beller, Zachary Hou, Panpan Kinser, Holly E Liang, Hongwu Zhang, Guohui Shi, Jingyi Tarek, Mounir Cui, Jianmin |
author_facet | Zaydman, Mark A Kasimova, Marina A McFarland, Kelli Beller, Zachary Hou, Panpan Kinser, Holly E Liang, Hongwu Zhang, Guohui Shi, Jingyi Tarek, Mounir Cui, Jianmin |
author_sort | Zaydman, Mark A |
collection | PubMed |
description | Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the I(Ks) current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of I(Ks) (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001 |
format | Online Article Text |
id | pubmed-4381907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43819072015-04-03 Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel Zaydman, Mark A Kasimova, Marina A McFarland, Kelli Beller, Zachary Hou, Panpan Kinser, Holly E Liang, Hongwu Zhang, Guohui Shi, Jingyi Tarek, Mounir Cui, Jianmin eLife Biophysics and Structural Biology Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the I(Ks) current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of I(Ks) (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001 eLife Sciences Publications, Ltd 2014-12-23 /pmc/articles/PMC4381907/ /pubmed/25535795 http://dx.doi.org/10.7554/eLife.03606 Text en © 2014, Zaydman et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biophysics and Structural Biology Zaydman, Mark A Kasimova, Marina A McFarland, Kelli Beller, Zachary Hou, Panpan Kinser, Holly E Liang, Hongwu Zhang, Guohui Shi, Jingyi Tarek, Mounir Cui, Jianmin Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel |
title | Domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the IKs ion channel |
title_full | Domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the IKs ion channel |
title_fullStr | Domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the IKs ion channel |
title_full_unstemmed | Domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the IKs ion channel |
title_short | Domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the IKs ion channel |
title_sort | domain–domain interactions determine the gating, permeation,
pharmacology, and subunit modulation of the iks ion channel |
topic | Biophysics and Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381907/ https://www.ncbi.nlm.nih.gov/pubmed/25535795 http://dx.doi.org/10.7554/eLife.03606 |
work_keys_str_mv | AT zaydmanmarka domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT kasimovamarinaa domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT mcfarlandkelli domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT bellerzachary domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT houpanpan domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT kinserhollye domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT lianghongwu domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT zhangguohui domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT shijingyi domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT tarekmounir domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel AT cuijianmin domaindomaininteractionsdeterminethegatingpermeationpharmacologyandsubunitmodulationoftheiksionchannel |