Cargando…
Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel
Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-ga...
Autores principales: | Zaydman, Mark A, Kasimova, Marina A, McFarland, Kelli, Beller, Zachary, Hou, Panpan, Kinser, Holly E, Liang, Hongwu, Zhang, Guohui, Shi, Jingyi, Tarek, Mounir, Cui, Jianmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381907/ https://www.ncbi.nlm.nih.gov/pubmed/25535795 http://dx.doi.org/10.7554/eLife.03606 |
Ejemplares similares
-
ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling
por: Hou, Panpan, et al.
Publicado: (2019) -
The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel
por: Zhao, Juan, et al.
Publicado: (2016) -
Unmasking coupling between channel gating and ion permeation in the muscle nicotinic receptor
por: Strikwerda, John R, et al.
Publicado: (2021) -
The HCN domain couples voltage gating and cAMP response in hyperpolarization-activated cyclic nucleotide-gated channels
por: Porro, Alessandro, et al.
Publicado: (2019) -
Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state
por: Taylor, Keenan C, et al.
Publicado: (2020)