Cargando…
Analyzing Large Gene Expression and Methylation Data Profiles Using StatBicRM: Statistical Biclustering-Based Rule Mining
Microarray and beadchip are two most efficient techniques for measuring gene expression and methylation data in bioinformatics. Biclustering deals with the simultaneous clustering of genes and samples. In this article, we propose a computational rule mining framework, StatBicRM (i.e., statistical bi...
Autores principales: | Maulik, Ujjwal, Mallik, Saurav, Mukhopadhyay, Anirban, Bandyopadhyay, Sanghamitra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382191/ https://www.ncbi.nlm.nih.gov/pubmed/25830807 http://dx.doi.org/10.1371/journal.pone.0119448 |
Ejemplares similares
-
A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions
por: Mukhopadhyay, Anirban, et al.
Publicado: (2012) -
Incorporating the type and direction information in predicting novel regulatory interactions between HIV-1 and human proteins using a biclustering approach
por: Mukhopadhyay, Anirban, et al.
Publicado: (2014) -
BicSPAM: flexible biclustering using sequential patterns
por: Henriques, Rui, et al.
Publicado: (2014) -
Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
por: Maulik, Ujjwal, et al.
Publicado: (2009) -
Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble of Pareto-Optimal Solutions for Gene Marker Identification
por: Mukhopadhyay, Anirban, et al.
Publicado: (2010)