Cargando…
MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins
Motivation: Recent developments of statistical techniques to infer direct evolutionary couplings between residue pairs have rendered covariation-based contact prediction a viable means for accurate 3D modelling of proteins, with no information other than the sequence required. To extend the usefulne...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382908/ https://www.ncbi.nlm.nih.gov/pubmed/25431331 http://dx.doi.org/10.1093/bioinformatics/btu791 |
_version_ | 1782364645045043200 |
---|---|
author | Jones, David T. Singh, Tanya Kosciolek, Tomasz Tetchner, Stuart |
author_facet | Jones, David T. Singh, Tanya Kosciolek, Tomasz Tetchner, Stuart |
author_sort | Jones, David T. |
collection | PubMed |
description | Motivation: Recent developments of statistical techniques to infer direct evolutionary couplings between residue pairs have rendered covariation-based contact prediction a viable means for accurate 3D modelling of proteins, with no information other than the sequence required. To extend the usefulness of contact prediction, we have designed a new meta-predictor (MetaPSICOV) which combines three distinct approaches for inferring covariation signals from multiple sequence alignments, considers a broad range of other sequence-derived features and, uniquely, a range of metrics which describe both the local and global quality of the input multiple sequence alignment. Finally, we use a two-stage predictor, where the second stage filters the output of the first stage. This two-stage predictor is additionally evaluated on its ability to accurately predict the long range network of hydrogen bonds, including correctly assigning the donor and acceptor residues. Results: Using the original PSICOV benchmark set of 150 protein families, MetaPSICOV achieves a mean precision of 0.54 for top-L predicted long range contacts—around 60% higher than PSICOV, and around 40% better than CCMpred. In de novo protein structure prediction using FRAGFOLD, MetaPSICOV is able to improve the TM-scores of models by a median of 0.05 compared with PSICOV. Lastly, for predicting long range hydrogen bonding, MetaPSICOV-HB achieves a precision of 0.69 for the top-L/10 hydrogen bonds compared with just 0.26 for the baseline MetaPSICOV. Availability and implementation: MetaPSICOV is available as a freely available web server at http://bioinf.cs.ucl.ac.uk/MetaPSICOV. Raw data (predicted contact lists and 3D models) and source code can be downloaded from http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV. Contact: d.t.jones@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-4382908 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43829082015-04-08 MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins Jones, David T. Singh, Tanya Kosciolek, Tomasz Tetchner, Stuart Bioinformatics Original Papers Motivation: Recent developments of statistical techniques to infer direct evolutionary couplings between residue pairs have rendered covariation-based contact prediction a viable means for accurate 3D modelling of proteins, with no information other than the sequence required. To extend the usefulness of contact prediction, we have designed a new meta-predictor (MetaPSICOV) which combines three distinct approaches for inferring covariation signals from multiple sequence alignments, considers a broad range of other sequence-derived features and, uniquely, a range of metrics which describe both the local and global quality of the input multiple sequence alignment. Finally, we use a two-stage predictor, where the second stage filters the output of the first stage. This two-stage predictor is additionally evaluated on its ability to accurately predict the long range network of hydrogen bonds, including correctly assigning the donor and acceptor residues. Results: Using the original PSICOV benchmark set of 150 protein families, MetaPSICOV achieves a mean precision of 0.54 for top-L predicted long range contacts—around 60% higher than PSICOV, and around 40% better than CCMpred. In de novo protein structure prediction using FRAGFOLD, MetaPSICOV is able to improve the TM-scores of models by a median of 0.05 compared with PSICOV. Lastly, for predicting long range hydrogen bonding, MetaPSICOV-HB achieves a precision of 0.69 for the top-L/10 hydrogen bonds compared with just 0.26 for the baseline MetaPSICOV. Availability and implementation: MetaPSICOV is available as a freely available web server at http://bioinf.cs.ucl.ac.uk/MetaPSICOV. Raw data (predicted contact lists and 3D models) and source code can be downloaded from http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV. Contact: d.t.jones@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2015-04-01 2014-11-26 /pmc/articles/PMC4382908/ /pubmed/25431331 http://dx.doi.org/10.1093/bioinformatics/btu791 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Jones, David T. Singh, Tanya Kosciolek, Tomasz Tetchner, Stuart MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title | MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title_full | MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title_fullStr | MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title_full_unstemmed | MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title_short | MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
title_sort | metapsicov: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382908/ https://www.ncbi.nlm.nih.gov/pubmed/25431331 http://dx.doi.org/10.1093/bioinformatics/btu791 |
work_keys_str_mv | AT jonesdavidt metapsicovcombiningcoevolutionmethodsforaccuratepredictionofcontactsandlongrangehydrogenbondinginproteins AT singhtanya metapsicovcombiningcoevolutionmethodsforaccuratepredictionofcontactsandlongrangehydrogenbondinginproteins AT kosciolektomasz metapsicovcombiningcoevolutionmethodsforaccuratepredictionofcontactsandlongrangehydrogenbondinginproteins AT tetchnerstuart metapsicovcombiningcoevolutionmethodsforaccuratepredictionofcontactsandlongrangehydrogenbondinginproteins |