Cargando…
Trainable hardware for dynamical computing using error backpropagation through physical media
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform...
Autores principales: | Hermans, Michiel, Burm, Michaël, Van Vaerenbergh, Thomas, Dambre, Joni, Bienstman, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382991/ https://www.ncbi.nlm.nih.gov/pubmed/25801303 http://dx.doi.org/10.1038/ncomms7729 |
Ejemplares similares
-
Automated Design of Complex Dynamic Systems
por: Hermans, Michiel, et al.
Publicado: (2014) -
Simulating self-learning in photorefractive optical reservoir computers
por: Laporte, Floris, et al.
Publicado: (2021) -
Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks
por: Mostafa, Hesham, et al.
Publicado: (2017) -
Addressing limited weight resolution in a fully optical neuromorphic reservoir computing readout
por: Ma, Chonghuai, et al.
Publicado: (2021) -
Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths
por: Gooskens, Emmanuel, et al.
Publicado: (2023)