Cargando…

Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiu, Isaac M, Barrett, Lee B, Williams, Erika K, Strochlic, David E, Lee, Seungkyu, Weyer, Andy D, Lou, Shan, Bryman, Gregory S, Roberson, David P, Ghasemlou, Nader, Piccoli, Cara, Ahat, Ezgi, Wang, Victor, Cobos, Enrique J, Stucky, Cheryl L, Ma, Qiufu, Liberles, Stephen D, Woolf, Clifford J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383053/
https://www.ncbi.nlm.nih.gov/pubmed/25525749
http://dx.doi.org/10.7554/eLife.04660
Descripción
Sumario:The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(−)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001