Cargando…

MagiCMicroRna: a web implementation of AgiMicroRna using shiny

BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Coonen, Maarten LJ, Theunissen, Daniel HJ, Kleinjans, Jos CS, Jennen, Danyel GJ
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383057/
https://www.ncbi.nlm.nih.gov/pubmed/25838840
http://dx.doi.org/10.1186/s13029-015-0035-5
_version_ 1782364671091671040
author Coonen, Maarten LJ
Theunissen, Daniel HJ
Kleinjans, Jos CS
Jennen, Danyel GJ
author_facet Coonen, Maarten LJ
Theunissen, Daniel HJ
Kleinjans, Jos CS
Jennen, Danyel GJ
author_sort Coonen, Maarten LJ
collection PubMed
description BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach. RESULTS: We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining). CONCLUSIONS: The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13029-015-0035-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4383057
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-43830572015-04-03 MagiCMicroRna: a web implementation of AgiMicroRna using shiny Coonen, Maarten LJ Theunissen, Daniel HJ Kleinjans, Jos CS Jennen, Danyel GJ Source Code Biol Med Software BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach. RESULTS: We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining). CONCLUSIONS: The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13029-015-0035-5) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-26 /pmc/articles/PMC4383057/ /pubmed/25838840 http://dx.doi.org/10.1186/s13029-015-0035-5 Text en © Coonen et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Software
Coonen, Maarten LJ
Theunissen, Daniel HJ
Kleinjans, Jos CS
Jennen, Danyel GJ
MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title_full MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title_fullStr MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title_full_unstemmed MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title_short MagiCMicroRna: a web implementation of AgiMicroRna using shiny
title_sort magicmicrorna: a web implementation of agimicrorna using shiny
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383057/
https://www.ncbi.nlm.nih.gov/pubmed/25838840
http://dx.doi.org/10.1186/s13029-015-0035-5
work_keys_str_mv AT coonenmaartenlj magicmicrornaawebimplementationofagimicrornausingshiny
AT theunissendanielhj magicmicrornaawebimplementationofagimicrornausingshiny
AT kleinjansjoscs magicmicrornaawebimplementationofagimicrornausingshiny
AT jennendanyelgj magicmicrornaawebimplementationofagimicrornausingshiny