Cargando…
MagiCMicroRna: a web implementation of AgiMicroRna using shiny
BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383057/ https://www.ncbi.nlm.nih.gov/pubmed/25838840 http://dx.doi.org/10.1186/s13029-015-0035-5 |
_version_ | 1782364671091671040 |
---|---|
author | Coonen, Maarten LJ Theunissen, Daniel HJ Kleinjans, Jos CS Jennen, Danyel GJ |
author_facet | Coonen, Maarten LJ Theunissen, Daniel HJ Kleinjans, Jos CS Jennen, Danyel GJ |
author_sort | Coonen, Maarten LJ |
collection | PubMed |
description | BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach. RESULTS: We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining). CONCLUSIONS: The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13029-015-0035-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4383057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43830572015-04-03 MagiCMicroRna: a web implementation of AgiMicroRna using shiny Coonen, Maarten LJ Theunissen, Daniel HJ Kleinjans, Jos CS Jennen, Danyel GJ Source Code Biol Med Software BACKGROUND: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach. RESULTS: We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining). CONCLUSIONS: The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13029-015-0035-5) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-26 /pmc/articles/PMC4383057/ /pubmed/25838840 http://dx.doi.org/10.1186/s13029-015-0035-5 Text en © Coonen et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Software Coonen, Maarten LJ Theunissen, Daniel HJ Kleinjans, Jos CS Jennen, Danyel GJ MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title | MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title_full | MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title_fullStr | MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title_full_unstemmed | MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title_short | MagiCMicroRna: a web implementation of AgiMicroRna using shiny |
title_sort | magicmicrorna: a web implementation of agimicrorna using shiny |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383057/ https://www.ncbi.nlm.nih.gov/pubmed/25838840 http://dx.doi.org/10.1186/s13029-015-0035-5 |
work_keys_str_mv | AT coonenmaartenlj magicmicrornaawebimplementationofagimicrornausingshiny AT theunissendanielhj magicmicrornaawebimplementationofagimicrornausingshiny AT kleinjansjoscs magicmicrornaawebimplementationofagimicrornausingshiny AT jennendanyelgj magicmicrornaawebimplementationofagimicrornausingshiny |