Cargando…
Passive ankle movement increases cerebral blood oxygenation in the elderly: an experimental study
BACKGROUND: Ankle exercise has been proven to be an effective intervention to increase venous velocity. However, the efficacy of ankle exercise for improving cerebral circulation has not been determined. We hypothesized that ankle exercise in the supine position would be able to increase oxyhemoglob...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383075/ https://www.ncbi.nlm.nih.gov/pubmed/25838799 http://dx.doi.org/10.1186/s12912-015-0066-x |
Sumario: | BACKGROUND: Ankle exercise has been proven to be an effective intervention to increase venous velocity. However, the efficacy of ankle exercise for improving cerebral circulation has not been determined. We hypothesized that ankle exercise in the supine position would be able to increase oxyhemoglobin levels measured at the forehead. METHODS: Seventeen community-dwelling elderly women participated in this study. We recorded blood pressure, heart rate (HR), and oxyhemoglobin (OxyHb) levels from the participants in the supine position. Participants repeated ankle plantar flexion and dorsiflexion movements for 1 min. Two types of exercise were used: active movement and passive movement. We used two-way analysis of variance to assess the differences in mean arterial blood pressure (MAP), HR, and OxyHb between different exercises (active and passive) and times (before and after exercise). RESULTS: The HR and MAP increased during active exercise but not during passive exercise. On the other hand, the levels of OxyHb measured at the forehead were elevated during both active and passive exercises. This increase lasted at least 1 min after exercise. There was no significant difference between active and passive exercise with regard to OxyHb; however, a significant difference was observed between before and after exercise (p < 0.05, η(2)(G) = 0.153). CONCLUSIONS: The physiological response of OxyHb to ankle exercise was different from that of the other cardiovascular functions. Both active and passive ankle exercises were able to increase cerebral blood oxygenation, whereas the other cardiovascular functions did not respond to passive exercise. |
---|