Cargando…
Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase
BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer deaths worldwide. However, current chemotherapeutic drugs for HCC are either poorly effective or expensive, and treatment with these drugs has not led to satisfactory outcomes. In a 2012 case report, we described our breakthrough...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383201/ https://www.ncbi.nlm.nih.gov/pubmed/25886177 http://dx.doi.org/10.1186/s12885-015-1137-9 |
_version_ | 1782364693776564224 |
---|---|
author | Feng, Yu-Min Feng, Chin-Wen Chen, Syue-Yi Hsieh, Hsiao-Yen Chen, Yu-Hsin Hsu, Cheng-Da |
author_facet | Feng, Yu-Min Feng, Chin-Wen Chen, Syue-Yi Hsieh, Hsiao-Yen Chen, Yu-Hsin Hsu, Cheng-Da |
author_sort | Feng, Yu-Min |
collection | PubMed |
description | BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer deaths worldwide. However, current chemotherapeutic drugs for HCC are either poorly effective or expensive, and treatment with these drugs has not led to satisfactory outcomes. In a 2012 case report, we described our breakthrough finding in two advanced HCC patients, of whom one achieved complete remission of liver tumors and the other a normalized α-fetoprotein level, along with complete remission of their lung metastases, after the concomitant use of thalidomide and cyproheptadine. We assumed the key factor in our effective therapy to be cyproheptadine. In this study, we investigated the antiproliferative effects and molecular mechanisms of cyproheptadine. METHODS: The effect of cyproheptadine on cell proliferation was examined in human HCC cell lines HepG2 and Huh-7. Cell viability was assayed with Cell Counting Kit-8; cell cycle distribution was analyzed by flow cytometry. Mechanisms underlying cyproheptadine-induced cell cycle arrest were probed by western blot analysis. RESULTS: Cyproheptadine had a potent inhibitory effect on the proliferation of HepG2 and Huh-7 cells but minimal toxicity in normal hepatocytes. Cyproheptadine induced cell cycle arrest in HepG2 cells in the G1 phase and in Huh-7 cells at the G1/S transition. The cyproheptadine-induced G1 arrest in HepG2 cells was associated with an increased expression of HBP1 and p16, whereas the G1/S arrest in Huh-7 cells was associated with an increase in p21 and p27 expression and a dramatic decrease in the phosphorylation of the retinoblastoma protein. Additionally, cyproheptadine elevated the percentage of Huh-7 cells in the sub-G1 population, increased annexin V staining for cell death, and raised the levels of PARP and its cleaved form, indicating induction of apoptosis. Finally, cyproheptadine-mediated cell cycle arrest was dependent upon the activation of p38 MAP kinase in HepG2 cells and the activation of both p38 MAP kinase and CHK2 in Huh-7 cells. CONCLUSIONS: Our results demonstrate that a non-classical p38 MAP kinase function, regulation of cell cycle checkpoints, is one of the underlying mechanisms promoted by cyproheptadine to suppress the proliferation of HCC cells. These results provide evidence for the drug’s potential as a treatment option for liver cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1137-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4383201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43832012015-04-03 Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase Feng, Yu-Min Feng, Chin-Wen Chen, Syue-Yi Hsieh, Hsiao-Yen Chen, Yu-Hsin Hsu, Cheng-Da BMC Cancer Research Article BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer deaths worldwide. However, current chemotherapeutic drugs for HCC are either poorly effective or expensive, and treatment with these drugs has not led to satisfactory outcomes. In a 2012 case report, we described our breakthrough finding in two advanced HCC patients, of whom one achieved complete remission of liver tumors and the other a normalized α-fetoprotein level, along with complete remission of their lung metastases, after the concomitant use of thalidomide and cyproheptadine. We assumed the key factor in our effective therapy to be cyproheptadine. In this study, we investigated the antiproliferative effects and molecular mechanisms of cyproheptadine. METHODS: The effect of cyproheptadine on cell proliferation was examined in human HCC cell lines HepG2 and Huh-7. Cell viability was assayed with Cell Counting Kit-8; cell cycle distribution was analyzed by flow cytometry. Mechanisms underlying cyproheptadine-induced cell cycle arrest were probed by western blot analysis. RESULTS: Cyproheptadine had a potent inhibitory effect on the proliferation of HepG2 and Huh-7 cells but minimal toxicity in normal hepatocytes. Cyproheptadine induced cell cycle arrest in HepG2 cells in the G1 phase and in Huh-7 cells at the G1/S transition. The cyproheptadine-induced G1 arrest in HepG2 cells was associated with an increased expression of HBP1 and p16, whereas the G1/S arrest in Huh-7 cells was associated with an increase in p21 and p27 expression and a dramatic decrease in the phosphorylation of the retinoblastoma protein. Additionally, cyproheptadine elevated the percentage of Huh-7 cells in the sub-G1 population, increased annexin V staining for cell death, and raised the levels of PARP and its cleaved form, indicating induction of apoptosis. Finally, cyproheptadine-mediated cell cycle arrest was dependent upon the activation of p38 MAP kinase in HepG2 cells and the activation of both p38 MAP kinase and CHK2 in Huh-7 cells. CONCLUSIONS: Our results demonstrate that a non-classical p38 MAP kinase function, regulation of cell cycle checkpoints, is one of the underlying mechanisms promoted by cyproheptadine to suppress the proliferation of HCC cells. These results provide evidence for the drug’s potential as a treatment option for liver cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1137-9) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-17 /pmc/articles/PMC4383201/ /pubmed/25886177 http://dx.doi.org/10.1186/s12885-015-1137-9 Text en © Feng et al.; licensee BioMed Central. 2015 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Feng, Yu-Min Feng, Chin-Wen Chen, Syue-Yi Hsieh, Hsiao-Yen Chen, Yu-Hsin Hsu, Cheng-Da Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title | Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title_full | Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title_fullStr | Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title_full_unstemmed | Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title_short | Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase |
title_sort | cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of p38 map kinase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383201/ https://www.ncbi.nlm.nih.gov/pubmed/25886177 http://dx.doi.org/10.1186/s12885-015-1137-9 |
work_keys_str_mv | AT fengyumin cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase AT fengchinwen cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase AT chensyueyi cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase AT hsiehhsiaoyen cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase AT chenyuhsin cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase AT hsuchengda cyproheptadineanantihistaminicdruginhibitsproliferationofhepatocellularcarcinomacellsbyblockingcellcycleprogressionthroughtheactivationofp38mapkinase |