Cargando…

Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes

Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Shoji, Jun-ya, Charlton, Nikki D., Yi, Mihwa, Young, Carolyn A., Craven, Kelly D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383479/
https://www.ncbi.nlm.nih.gov/pubmed/25837972
http://dx.doi.org/10.1371/journal.pone.0121875
_version_ 1782364743000915968
author Shoji, Jun-ya
Charlton, Nikki D.
Yi, Mihwa
Young, Carolyn A.
Craven, Kelly D.
author_facet Shoji, Jun-ya
Charlton, Nikki D.
Yi, Mihwa
Young, Carolyn A.
Craven, Kelly D.
author_sort Shoji, Jun-ya
collection PubMed
description Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.
format Online
Article
Text
id pubmed-4383479
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43834792015-04-09 Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes Shoji, Jun-ya Charlton, Nikki D. Yi, Mihwa Young, Carolyn A. Craven, Kelly D. PLoS One Research Article Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species. Public Library of Science 2015-04-02 /pmc/articles/PMC4383479/ /pubmed/25837972 http://dx.doi.org/10.1371/journal.pone.0121875 Text en © 2015 Shoji et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Shoji, Jun-ya
Charlton, Nikki D.
Yi, Mihwa
Young, Carolyn A.
Craven, Kelly D.
Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title_full Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title_fullStr Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title_full_unstemmed Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title_short Vegetative Hyphal Fusion and Subsequent Nuclear Behavior in Epichloë Grass Endophytes
title_sort vegetative hyphal fusion and subsequent nuclear behavior in epichloë grass endophytes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383479/
https://www.ncbi.nlm.nih.gov/pubmed/25837972
http://dx.doi.org/10.1371/journal.pone.0121875
work_keys_str_mv AT shojijunya vegetativehyphalfusionandsubsequentnuclearbehaviorinepichloegrassendophytes
AT charltonnikkid vegetativehyphalfusionandsubsequentnuclearbehaviorinepichloegrassendophytes
AT yimihwa vegetativehyphalfusionandsubsequentnuclearbehaviorinepichloegrassendophytes
AT youngcarolyna vegetativehyphalfusionandsubsequentnuclearbehaviorinepichloegrassendophytes
AT cravenkellyd vegetativehyphalfusionandsubsequentnuclearbehaviorinepichloegrassendophytes