Cargando…
An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation
Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed fo...
Autores principales: | Huang, Chencheng, Zeng, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383562/ https://www.ncbi.nlm.nih.gov/pubmed/25837416 http://dx.doi.org/10.1371/journal.pone.0120399 |
Ejemplares similares
-
A Global Inhomogeneous Intensity Clustering- (GINC-) Based Active Contour Model for Image Segmentation and Bias Correction
por: Feng, Chaolu, et al.
Publicado: (2020) -
Segmentation of Intensity Inhomogeneous Brain MR Images Using Active Contours
por: Akram, Farhan, et al.
Publicado: (2014) -
A fast two-stage active contour model for intensity inhomogeneous image segmentation
por: Song, Yangyang, et al.
Publicado: (2019) -
Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation
por: Soomro, Shafiullah, et al.
Publicado: (2016) -
Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity
por: Akram, Farhan, et al.
Publicado: (2017)