Cargando…

Global Analysis of Posttranscriptional Gene Expression in Response to Sodium Arsenite

BACKGROUND: Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. OBJECTIVES: We evaluated the prevalence of changes in mRNA stability in respo...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Lian-Qun, Abey, Sarah, Harris, Shawn, Shah, Ruchir, Gerrish, Kevin E., Blackshear, Perry J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: NLM-Export 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383576/
https://www.ncbi.nlm.nih.gov/pubmed/25493608
http://dx.doi.org/10.1289/ehp.1408626
Descripción
Sumario:BACKGROUND: Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. OBJECTIVES: We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. METHODS: We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic concentrations of sodium arsenite, and we confirmed some of these changes using real-time reverse-transcription polymerase chain reaction (RT-PCR). RESULTS: In arsenite-exposed cells, 186 probe set–identified transcripts were significantly increased and 167 were significantly decreased. When decay rates were analyzed after actinomycin D treatment, only 4,992 (9.1%) of probe set–identified transcripts decayed by > 25% after 4 hr. Of these, 70 were among the 353 whose steady-state levels were altered by arsenite, and of these, only 4 exhibited significantly different decay rates between arsenite and control treatment. Real-time RT-PCR confirmed a major, significant arsenite-induced stabilization of the mRNA encoding δ aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. This change presumably accounted for at least part of the 2.7-fold increase in steady-state ALAS1 mRNA levels seen after arsenite treatment. This could reflect decreases in cellular heme caused by the massive induction by arsenite of heme oxygenase mRNA (HMOX1; 68-fold increase), the rate-limiting enzyme in heme catabolism. CONCLUSIONS: We conclude that arsenite modification of mRNA stability is relatively uncommon, but in some instances can result in significant changes in gene expression. CITATION: Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. 2015. Global analysis of posttranscriptional gene expression in response to sodium arsenite. Environ Health Perspect 123:324–330; http://dx.doi.org/10.1289/ehp.1408626