Cargando…

The influences of hyperbaric oxygen therapy with a lower pressure and oxygen concentration than previous methods on physiological mechanisms in dogs

Recently, hyperbaric oxygen therapy with a lower pressure and oxygen concentration (L-HBOT) than previous methods has been used for dogs in Japan; however, the influences of L-HBOT on dogs have not been clarified. To verify the influences of L-HBOT on physiological mechanism in dogs, we investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: ISHIBASHI, Maki, HAYASHI, Akiyoshi, AKIYOSHI, Hideo, OHASHI, Fumihito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383775/
https://www.ncbi.nlm.nih.gov/pubmed/25482821
http://dx.doi.org/10.1292/jvms.14-0316
Descripción
Sumario:Recently, hyperbaric oxygen therapy with a lower pressure and oxygen concentration (L-HBOT) than previous methods has been used for dogs in Japan; however, the influences of L-HBOT on dogs have not been clarified. To verify the influences of L-HBOT on physiological mechanism in dogs, we investigated blood gas parameters, glutathione peroxidase (GPx) activity, heart rate variability, stress-related hormones and skin conductance (SC) in 4 clinically normal beagle dogs with catheters in their carotid arteries and jugular veins when they were quiet, after running, after receiving L-HBOT (30% oxygen concentration, 1.3 atmospheres absolute, 30 min) or after not receiving L-HBOT. The results showed there were no changes in blood gas parameters, heart rate variability and catecholamine levels after L-HBOT. GPx activity was significantly higher, and the SC and cortisol level were lower in dogs that received L-HBOT than those when they were quiet. These results suggested that L-HBOT may have a small influence on oxygenation dynamics, activate antioxidant enzymes such as GPx, restrain autonomic nervous activity and control the balance between oxidation and antioxidation inside the body.