Cargando…
Four key challenges in infectious disease modelling using data from multiple sources
Public health-related decision-making on policies aimed at controlling epidemics is increasingly evidence-based, exploiting multiple sources of data. Policy makers rely on complex models that are required to be robust, realistically approximating epidemics and consistent with all relevant data. Meet...
Autores principales: | De Angelis, Daniela, Presanis, Anne M., Birrell, Paul J., Tomba, Gianpaolo Scalia, House, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383805/ https://www.ncbi.nlm.nih.gov/pubmed/25843390 http://dx.doi.org/10.1016/j.epidem.2014.09.004 |
Ejemplares similares
-
Estimation in emerging epidemics: biases and remedies
por: Britton, Tom, et al.
Publicado: (2019) -
Exploiting routinely collected severe case data to monitor and predict influenza outbreaks
por: Corbella, Alice, et al.
Publicado: (2018) -
Modelling preventive measures and their effect on generation times in emerging epidemics
por: Favero, Martina, et al.
Publicado: (2022) -
An approximate diffusion process for environmental stochasticity in infectious disease transmission modelling
por: Ghosh, Sanmitra, et al.
Publicado: (2023) -
Trends in COVID-19 hospital outcomes in England before and after vaccine introduction, a cohort study
por: Kirwan, Peter D., et al.
Publicado: (2022)