Cargando…
Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation
This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a mate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384096/ https://www.ncbi.nlm.nih.gov/pubmed/25569163 http://dx.doi.org/10.3390/jfb6010001 |
_version_ | 1782364849874927616 |
---|---|
author | Selmin, Francesca Puoci, Francesco Parisi, Ortensia I. Franzé, Silvia Musazzi, Umberto M. Cilurzo, Francesco |
author_facet | Selmin, Francesca Puoci, Francesco Parisi, Ortensia I. Franzé, Silvia Musazzi, Umberto M. Cilurzo, Francesco |
author_sort | Selmin, Francesca |
collection | PubMed |
description | This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of M(w) and T(g) of the starting PLGA (M(w )(PLGA) = 26.3 ± 1.3 kDa vs. M(w )(g-CA-PLGA) = 22.8 ± 0.7 kDa; T(g)( PLGA) = 47.7 ± 0.8 °C vs. T(g)( g-CA-PLGA) = 47.4 ± 0.2 °C). By using a W(1)/O/W(2) technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EE(PLGA) = 35.0% ± 0.7% vs. EE(g-CA-PLGA) = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of M(w) and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. |
format | Online Article Text |
id | pubmed-4384096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-43840962015-05-05 Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation Selmin, Francesca Puoci, Francesco Parisi, Ortensia I. Franzé, Silvia Musazzi, Umberto M. Cilurzo, Francesco J Funct Biomater Article This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of M(w) and T(g) of the starting PLGA (M(w )(PLGA) = 26.3 ± 1.3 kDa vs. M(w )(g-CA-PLGA) = 22.8 ± 0.7 kDa; T(g)( PLGA) = 47.7 ± 0.8 °C vs. T(g)( g-CA-PLGA) = 47.4 ± 0.2 °C). By using a W(1)/O/W(2) technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EE(PLGA) = 35.0% ± 0.7% vs. EE(g-CA-PLGA) = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of M(w) and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. MDPI 2015-01-05 /pmc/articles/PMC4384096/ /pubmed/25569163 http://dx.doi.org/10.3390/jfb6010001 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Selmin, Francesca Puoci, Francesco Parisi, Ortensia I. Franzé, Silvia Musazzi, Umberto M. Cilurzo, Francesco Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title | Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title_full | Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title_fullStr | Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title_full_unstemmed | Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title_short | Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation |
title_sort | caffeic acid-plga conjugate to design protein drug delivery systems stable to irradiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384096/ https://www.ncbi.nlm.nih.gov/pubmed/25569163 http://dx.doi.org/10.3390/jfb6010001 |
work_keys_str_mv | AT selminfrancesca caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation AT puocifrancesco caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation AT parisiortensiai caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation AT franzesilvia caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation AT musazziumbertom caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation AT cilurzofrancesco caffeicacidplgaconjugatetodesignproteindrugdeliverysystemsstabletoirradiation |