Cargando…

FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R

BACKGROUND: Acquired radioresistance has significantly compromised the efficacy of radiotherapy for esophageal cancer. The purpose of this study is to investigate the roles of epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway in the acquirement of radioresistance during...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Huafang, Jin, Xiance, Zhang, Xuebang, Zhao, Lihao, Lin, Baochai, Li, Lili, Fei, Zhenghua, Shen, Lanxiao, Fang, Ya, Pan, Huanle, Xie, Congying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384308/
https://www.ncbi.nlm.nih.gov/pubmed/25888911
http://dx.doi.org/10.1186/s12967-015-0464-6
Descripción
Sumario:BACKGROUND: Acquired radioresistance has significantly compromised the efficacy of radiotherapy for esophageal cancer. The purpose of this study is to investigate the roles of epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway in the acquirement of radioresistance during the radiation treatment of esophageal cancer. METHODS: We previously established a radioresistant cell line (KYSE-150R) from the KYSE-150 cell line (a human cell line model for esophageal squamous cell carcinoma) with a gradient cumulative irradiation dose. In this study, the expression of EMT phenotypes and the Wnt/β-catenin signaling pathway proteins were examined by real-time PCR, western blot and immunofluorescence in the KYSE-150R cells. The KYSE-150R cells were then treated with a β-Catenin/Tcf inhibitor FH535. The expressions of nuclear and cytoplasmic β-catenin and EMT markers in KYSE-150R cells were assessed at both mRNA and protein level after FH535 treatment. The radiosensitization effect of FH535 on KYSE-150R was evaluated by CCK8 analysis and a colony forming assay. DNA repair capacities was detected by the neutral comet assays. RESULTS: KYSE-150R cell line displayed obvious radiation resistance and had a stable genetic ability. EMT phenotype was presented in the KYSE-150R cells with decreased E-cadherin and increased snail and twist expressions. The up-regulated expressions of Wnt/β-catenin signaling pathway proteins (Wnt1, FZD1-4, GSK3β, CTNNB1 and Cyclin D1), the increased phosphorylation of GSK3β, and the decreased phosphorylation of β-catenin were observed in KYSE-150R cells compared with KYSE-150 cells, implicating the activation of the Wnt pathway in KYSE-150R cells. The expression of nuclear β-catenin and nuclear translocation of β-catenin from the cytoplasm was decreased after FH535 treatment. FH535 also reversed EMT phenotypes by increasing E-cadherin expression. The cell proliferation rates of KYSE-150R were dose-dependent and the radiation survival fraction was significantly decreased upon FH535 treatment. Neutral comet assays indicated that FH535 impairs DNA double stranded break repair in KYSE-150R cells. CONCLUSIONS: Acquisition of radioresistance and EMT in esophageal cancer cells is associated with the activation of the Wnt/β-catenin pathway. EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting the Wnt/β-catenin pathway with FH535 treatment.