Cargando…
Axioms of adaptivity
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384743/ https://www.ncbi.nlm.nih.gov/pubmed/25983390 http://dx.doi.org/10.1016/j.camwa.2013.12.003 |
_version_ | 1782364951826923520 |
---|---|
author | Carstensen, C. Feischl, M. Page, M. Praetorius, D. |
author_facet | Carstensen, C. Feischl, M. Page, M. Praetorius, D. |
author_sort | Carstensen, C. |
collection | PubMed |
description | This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the [Formula: see text]-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. |
format | Online Article Text |
id | pubmed-4384743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43847432015-05-13 Axioms of adaptivity Carstensen, C. Feischl, M. Page, M. Praetorius, D. Comput Math Appl Article This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the [Formula: see text]-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. Pergamon Press 2014-04 /pmc/articles/PMC4384743/ /pubmed/25983390 http://dx.doi.org/10.1016/j.camwa.2013.12.003 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Carstensen, C. Feischl, M. Page, M. Praetorius, D. Axioms of adaptivity |
title | Axioms of adaptivity |
title_full | Axioms of adaptivity |
title_fullStr | Axioms of adaptivity |
title_full_unstemmed | Axioms of adaptivity |
title_short | Axioms of adaptivity |
title_sort | axioms of adaptivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384743/ https://www.ncbi.nlm.nih.gov/pubmed/25983390 http://dx.doi.org/10.1016/j.camwa.2013.12.003 |
work_keys_str_mv | AT carstensenc axiomsofadaptivity AT feischlm axiomsofadaptivity AT pagem axiomsofadaptivity AT praetoriusd axiomsofadaptivity |