Cargando…
Using Dynamic Noise Propagation to Infer Causal Regulatory Relationships in Biochemical Networks
[Image: see text] Cellular decision making is accomplished by complex networks, the structure of which has traditionally been inferred from mean gene expression data. In addition to mean data, quantitative measures of distributions across a population can be obtained using techniques such as flow cy...
Autores principales: | Lipinski-Kruszka, Joanna, Stewart-Ornstein, Jacob, Chevalier, Michael W., El-Samad, Hana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384829/ https://www.ncbi.nlm.nih.gov/pubmed/24967515 http://dx.doi.org/10.1021/sb5000059 |
Ejemplares similares
-
Noise-Driven Causal Inference in Biomolecular Networks
por: Prill, Robert J., et al.
Publicado: (2015) -
Causal network inference using biochemical kinetics
por: Oates, Chris J., et al.
Publicado: (2014) -
The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks
por: Chevalier, Michael, et al.
Publicado: (2015) -
Model-guided optogenetic study of PKA signaling in budding yeast
por: Stewart-Ornstein, Jacob, et al.
Publicado: (2017) -
Inferring the conservative causal core of gene regulatory networks
por: Altay, Gökmen, et al.
Publicado: (2010)