Cargando…
Extraction decision and identification of treatment predictors in Class I malocclusions
BACKGROUND: The extraction rate in orthodontics varies throughout the years. While the extraction decision is easily made or excluded in clear-cut cases, it still remains controversial what makes an orthodontist decide to extract in borderline cases. The aim of this retrospective study was to identi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384963/ https://www.ncbi.nlm.nih.gov/pubmed/24326213 http://dx.doi.org/10.1186/2196-1042-14-47 |
Sumario: | BACKGROUND: The extraction rate in orthodontics varies throughout the years. While the extraction decision is easily made or excluded in clear-cut cases, it still remains controversial what makes an orthodontist decide to extract in borderline cases. The aim of this retrospective study was to identify the percentage of extraction cases in a large group of Class I malocclusions and to clarify which variables contributed most to the extraction decision. METHODS: The sample consisted of 542 randomly selected records of Class I patients treated in a university graduate program and in five private orthodontic offices. Of these patients, 331 were female and 211 male. The mean age was 14.55 (standard deviation (SD) 5.36) for the non-extraction group and 14.52 (SD 4.86) for the extraction group. The extensive series of 32 linear and angular measurements derived from the cephalometric analysis and the dental casts, along with the variables of age and gender, fueled a stepwise discriminant analysis. RESULTS: The percentage of the patients treated with four first premolar extractions was 26.8%. The results showed that the variables of lower crowding, lower lip to E-plane, upper crowding, and overjet accounted most for the decision to extract at a very significant level (Sig. 0.000). The discriminant analysis assigned a classification power of 83.9% to the predictive model (p < 0.0001). Fisher's linear discriminant functions provided a mathematical model, according to which any case can be classified into the adequate treatment group. CONCLUSIONS: In a large contemporary sample of 542 Class I patients, the extraction rate was 26.8%. The most important measurements when the orthodontist decides extractions in Class I cases are lower crowding, lower lip to E-plane, upper crowding, and overjet. In clinical orthodontic practice, the findings facilitate treatment by providing evidence-based treatment predictors for Class I malocclusions. |
---|