Cargando…

A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model

We introduce a new formalism for evaluating analytically the cross-correlation structure of a finite-size firing-rate network with recurrent connections. The analysis performs a first-order perturbative expansion of neural activity equations that include three different sources of randomness: the ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Fasoli, Diego, Faugeras, Olivier, Panzeri, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385226/
https://www.ncbi.nlm.nih.gov/pubmed/25852981
http://dx.doi.org/10.1186/s13408-015-0020-y
_version_ 1782365027827712000
author Fasoli, Diego
Faugeras, Olivier
Panzeri, Stefano
author_facet Fasoli, Diego
Faugeras, Olivier
Panzeri, Stefano
author_sort Fasoli, Diego
collection PubMed
description We introduce a new formalism for evaluating analytically the cross-correlation structure of a finite-size firing-rate network with recurrent connections. The analysis performs a first-order perturbative expansion of neural activity equations that include three different sources of randomness: the background noise of the membrane potentials, their initial conditions, and the distribution of the recurrent synaptic weights. This allows the analytical quantification of the relationship between anatomical and functional connectivity, i.e. of how the synaptic connections determine the statistical dependencies at any order among different neurons. The technique we develop is general, but for simplicity and clarity we demonstrate its efficacy by applying it to the case of synaptic connections described by regular graphs. The analytical equations so obtained reveal previously unknown behaviors of recurrent firing-rate networks, especially on how correlations are modified by the external input, by the finite size of the network, by the density of the anatomical connections and by correlation in sources of randomness. In particular, we show that a strong input can make the neurons almost independent, suggesting that functional connectivity does not depend only on the static anatomical connectivity, but also on the external inputs. Moreover we prove that in general it is not possible to find a mean-field description à la Sznitman of the network, if the anatomical connections are too sparse or our three sources of variability are correlated. To conclude, we show a very counterintuitive phenomenon, which we call stochastic synchronization, through which neurons become almost perfectly correlated even if the sources of randomness are independent. Due to its ability to quantify how activity of individual neurons and the correlation among them depends upon external inputs, the formalism introduced here can serve as a basis for exploring analytically the computational capability of population codes expressed by recurrent neural networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0020-y) contains supplementary material 1.
format Online
Article
Text
id pubmed-4385226
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-43852262015-04-07 A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model Fasoli, Diego Faugeras, Olivier Panzeri, Stefano J Math Neurosci Research We introduce a new formalism for evaluating analytically the cross-correlation structure of a finite-size firing-rate network with recurrent connections. The analysis performs a first-order perturbative expansion of neural activity equations that include three different sources of randomness: the background noise of the membrane potentials, their initial conditions, and the distribution of the recurrent synaptic weights. This allows the analytical quantification of the relationship between anatomical and functional connectivity, i.e. of how the synaptic connections determine the statistical dependencies at any order among different neurons. The technique we develop is general, but for simplicity and clarity we demonstrate its efficacy by applying it to the case of synaptic connections described by regular graphs. The analytical equations so obtained reveal previously unknown behaviors of recurrent firing-rate networks, especially on how correlations are modified by the external input, by the finite size of the network, by the density of the anatomical connections and by correlation in sources of randomness. In particular, we show that a strong input can make the neurons almost independent, suggesting that functional connectivity does not depend only on the static anatomical connectivity, but also on the external inputs. Moreover we prove that in general it is not possible to find a mean-field description à la Sznitman of the network, if the anatomical connections are too sparse or our three sources of variability are correlated. To conclude, we show a very counterintuitive phenomenon, which we call stochastic synchronization, through which neurons become almost perfectly correlated even if the sources of randomness are independent. Due to its ability to quantify how activity of individual neurons and the correlation among them depends upon external inputs, the formalism introduced here can serve as a basis for exploring analytically the computational capability of population codes expressed by recurrent neural networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0020-y) contains supplementary material 1. Springer Berlin Heidelberg 2015-03-15 /pmc/articles/PMC4385226/ /pubmed/25852981 http://dx.doi.org/10.1186/s13408-015-0020-y Text en © Fasoli et al.; licensee Springer. 2015 Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Research
Fasoli, Diego
Faugeras, Olivier
Panzeri, Stefano
A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title_full A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title_fullStr A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title_full_unstemmed A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title_short A Formalism for Evaluating Analytically the Cross-Correlation Structure of a Firing-Rate Network Model
title_sort formalism for evaluating analytically the cross-correlation structure of a firing-rate network model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385226/
https://www.ncbi.nlm.nih.gov/pubmed/25852981
http://dx.doi.org/10.1186/s13408-015-0020-y
work_keys_str_mv AT fasolidiego aformalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel
AT faugerasolivier aformalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel
AT panzeristefano aformalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel
AT fasolidiego formalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel
AT faugerasolivier formalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel
AT panzeristefano formalismforevaluatinganalyticallythecrosscorrelationstructureofafiringratenetworkmodel