Cargando…
Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturati...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385301/ https://www.ncbi.nlm.nih.gov/pubmed/25852982 http://dx.doi.org/10.1186/s13408-015-0019-4 |
_version_ | 1782365042637799424 |
---|---|
author | Meijer, Hil G. E. Eissa, Tahra L. Kiewiet, Bert Neuman, Jeremy F. Schevon, Catherine A. Emerson, Ronald G. Goodman, Robert R. McKhann, Guy M. Marcuccilli, Charles J. Tryba, Andrew K. Cowan, Jack D. van Gils, Stephan A. van Drongelen, Wim |
author_facet | Meijer, Hil G. E. Eissa, Tahra L. Kiewiet, Bert Neuman, Jeremy F. Schevon, Catherine A. Emerson, Ronald G. Goodman, Robert R. McKhann, Guy M. Marcuccilli, Charles J. Tryba, Andrew K. Cowan, Jack D. van Gils, Stephan A. van Drongelen, Wim |
author_sort | Meijer, Hil G. E. |
collection | PubMed |
description | Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0019-4) contains supplementary material 1. |
format | Online Article Text |
id | pubmed-4385301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-43853012015-04-07 Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block Meijer, Hil G. E. Eissa, Tahra L. Kiewiet, Bert Neuman, Jeremy F. Schevon, Catherine A. Emerson, Ronald G. Goodman, Robert R. McKhann, Guy M. Marcuccilli, Charles J. Tryba, Andrew K. Cowan, Jack D. van Gils, Stephan A. van Drongelen, Wim J Math Neurosci Research Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0019-4) contains supplementary material 1. Springer Berlin Heidelberg 2015-03-27 /pmc/articles/PMC4385301/ /pubmed/25852982 http://dx.doi.org/10.1186/s13408-015-0019-4 Text en © Meijer et al.; licensee Springer. 2015 Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Research Meijer, Hil G. E. Eissa, Tahra L. Kiewiet, Bert Neuman, Jeremy F. Schevon, Catherine A. Emerson, Ronald G. Goodman, Robert R. McKhann, Guy M. Marcuccilli, Charles J. Tryba, Andrew K. Cowan, Jack D. van Gils, Stephan A. van Drongelen, Wim Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title | Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title_full | Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title_fullStr | Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title_full_unstemmed | Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title_short | Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block |
title_sort | modeling focal epileptic activity in the wilson–cowan model with depolarization block |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385301/ https://www.ncbi.nlm.nih.gov/pubmed/25852982 http://dx.doi.org/10.1186/s13408-015-0019-4 |
work_keys_str_mv | AT meijerhilge modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT eissatahral modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT kiewietbert modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT neumanjeremyf modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT schevoncatherinea modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT emersonronaldg modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT goodmanrobertr modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT mckhannguym modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT marcuccillicharlesj modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT trybaandrewk modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT cowanjackd modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT vangilsstephana modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock AT vandrongelenwim modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock |