Cargando…

Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block

Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturati...

Descripción completa

Detalles Bibliográficos
Autores principales: Meijer, Hil G. E., Eissa, Tahra L., Kiewiet, Bert, Neuman, Jeremy F., Schevon, Catherine A., Emerson, Ronald G., Goodman, Robert R., McKhann, Guy M., Marcuccilli, Charles J., Tryba, Andrew K., Cowan, Jack D., van Gils, Stephan A., van Drongelen, Wim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385301/
https://www.ncbi.nlm.nih.gov/pubmed/25852982
http://dx.doi.org/10.1186/s13408-015-0019-4
_version_ 1782365042637799424
author Meijer, Hil G. E.
Eissa, Tahra L.
Kiewiet, Bert
Neuman, Jeremy F.
Schevon, Catherine A.
Emerson, Ronald G.
Goodman, Robert R.
McKhann, Guy M.
Marcuccilli, Charles J.
Tryba, Andrew K.
Cowan, Jack D.
van Gils, Stephan A.
van Drongelen, Wim
author_facet Meijer, Hil G. E.
Eissa, Tahra L.
Kiewiet, Bert
Neuman, Jeremy F.
Schevon, Catherine A.
Emerson, Ronald G.
Goodman, Robert R.
McKhann, Guy M.
Marcuccilli, Charles J.
Tryba, Andrew K.
Cowan, Jack D.
van Gils, Stephan A.
van Drongelen, Wim
author_sort Meijer, Hil G. E.
collection PubMed
description Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0019-4) contains supplementary material 1.
format Online
Article
Text
id pubmed-4385301
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-43853012015-04-07 Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block Meijer, Hil G. E. Eissa, Tahra L. Kiewiet, Bert Neuman, Jeremy F. Schevon, Catherine A. Emerson, Ronald G. Goodman, Robert R. McKhann, Guy M. Marcuccilli, Charles J. Tryba, Andrew K. Cowan, Jack D. van Gils, Stephan A. van Drongelen, Wim J Math Neurosci Research Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13408-015-0019-4) contains supplementary material 1. Springer Berlin Heidelberg 2015-03-27 /pmc/articles/PMC4385301/ /pubmed/25852982 http://dx.doi.org/10.1186/s13408-015-0019-4 Text en © Meijer et al.; licensee Springer. 2015 Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Research
Meijer, Hil G. E.
Eissa, Tahra L.
Kiewiet, Bert
Neuman, Jeremy F.
Schevon, Catherine A.
Emerson, Ronald G.
Goodman, Robert R.
McKhann, Guy M.
Marcuccilli, Charles J.
Tryba, Andrew K.
Cowan, Jack D.
van Gils, Stephan A.
van Drongelen, Wim
Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title_full Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title_fullStr Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title_full_unstemmed Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title_short Modeling Focal Epileptic Activity in the Wilson–Cowan Model with Depolarization Block
title_sort modeling focal epileptic activity in the wilson–cowan model with depolarization block
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385301/
https://www.ncbi.nlm.nih.gov/pubmed/25852982
http://dx.doi.org/10.1186/s13408-015-0019-4
work_keys_str_mv AT meijerhilge modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT eissatahral modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT kiewietbert modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT neumanjeremyf modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT schevoncatherinea modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT emersonronaldg modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT goodmanrobertr modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT mckhannguym modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT marcuccillicharlesj modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT trybaandrewk modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT cowanjackd modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT vangilsstephana modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock
AT vandrongelenwim modelingfocalepilepticactivityinthewilsoncowanmodelwithdepolarizationblock