Cargando…
Development and validation of a classification approach for extracting severity automatically from electronic health records
BACKGROUND: Electronic Health Records (EHRs) contain a wealth of information useful for studying clinical phenotype-genotype relationships. Severity is important for distinguishing among phenotypes; however other severity indices classify patient-level severity (e.g., mild vs. acute dermatitis) rath...
Autores principales: | Boland, Mary Regina, Tatonetti, Nicholas P, Hripcsak, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386082/ https://www.ncbi.nlm.nih.gov/pubmed/25848530 http://dx.doi.org/10.1186/s13326-015-0010-8 |
Ejemplares similares
-
Are All Vaccines Created Equal? Using Electronic Health Records to Discover Vaccines Associated With Clinician-Coded Adverse Events
por: Boland, Mary Regina, et al.
Publicado: (2015) -
Birth month affects lifetime disease risk: a phenome-wide method
por: Boland, Mary Regina, et al.
Publicado: (2015) -
Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records
por: Ta, Casey N., et al.
Publicado: (2018) -
Climate Classification is an Important Factor in Assessing Quality-of-Care Across Hospitals
por: Boland, Mary Regina, et al.
Publicado: (2017) -
Development of A Machine Learning Algorithm to Classify Drugs Of Unknown Fetal Effect
por: Boland, Mary Regina, et al.
Publicado: (2017)