Cargando…
Learning Document Semantic Representation with Hybrid Deep Belief Network
High-level abstraction, for example, semantic representation, is vital for document classification and retrieval. However, how to learn document semantic representation is still a topic open for discussion in information retrieval and natural language processing. In this paper, we propose a new Hybr...
Autores principales: | Yan, Yan, Yin, Xu-Cheng, Li, Sujian, Yang, Mingyuan, Hao, Hong-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386712/ https://www.ncbi.nlm.nih.gov/pubmed/25878657 http://dx.doi.org/10.1155/2015/650527 |
Ejemplares similares
-
Biomedical literature classification with a CNNs-based hybrid learning network
por: Yan, Yan, et al.
Publicado: (2018) -
SemNet: Learning semantic attributes for human activity recognition with deep belief networks
por: Venkatachalam, Shanmuga, et al.
Publicado: (2022) -
Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics
por: Leshinskaya, Anna, et al.
Publicado: (2017) -
Corrigendum: SemNet: Learning semantic attributes for human activity recognition with deep belief networks
por: Venkatachalam, Shanmuga, et al.
Publicado: (2023) -
Enhanced Semantic Representation Learning for Sarcasm Detection by Integrating Context-Aware Attention and Fusion Network
por: Hao, Shufeng, et al.
Publicado: (2023)