Cargando…
Pathogenesis of Focal Cytoplasmic Necrosis of the Smooth Muscle Cells in Hypertensive Rat Arterial Media
Hypertensive rat arteries exhibited severe medial smooth muscle cell injury and necrosis. Electron microscopic observations showed the smooth muscle cells of these arteries exhibited characteristics of focal cytoplasmic necrosis forming new cytodemarcating membrane between the healthy cytoplasm and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387242/ https://www.ncbi.nlm.nih.gov/pubmed/25861127 http://dx.doi.org/10.1267/ahc.14006 |
Sumario: | Hypertensive rat arteries exhibited severe medial smooth muscle cell injury and necrosis. Electron microscopic observations showed the smooth muscle cells of these arteries exhibited characteristics of focal cytoplasmic necrosis forming new cytodemarcating membrane between the healthy cytoplasm and necrotic cytoplasm. When the focal necrotic cytoplasm disappeared from the injured smooth muscle cells, it left it with a moth-eaten leaf-like appearance (moth-eaten necrosis). At an advanced stage of injury, smooth muscle cells changed to islet-like cell bodies with newly formed basement membranes around them, and further islet-like cell bodies and cell debris disappeared leaving lamellar and reticular basement membranes. In hypertensive rats injected with nitroblue tetrazolium (NBT), formazan deposits were observed in the medial cells and nitrotyrosine, a biomarker of peroxynitrite, were immunohistochemically observed in the arterial media. Nick-end positive extranuclear small granular bodies, which might have derived from focal necrotic cytoplasm and nucleus, were detected in the arterial media using DNA nick-end labeling method. Based on electron microscopical and histochemical findings, we conjectured that the focal cytoplasmic necrosis of the smooth muscle cells in the arterial media depended on injury arising from mitochondria-derived oxidants. |
---|