Cargando…

Cytogenetic study of heptapterids (Teleostei, Siluriformes) with particular respect to the Nemuroglanis subclade

Abstract. The catfish family Heptapteridae (order Siluriformes) is endemic to the Neotropics and is one of the most common of the fish families in small bodies of water. Although over 200 species have been identified in this family, very few have been characterized cytogenetically. Here, we analyze...

Descripción completa

Detalles Bibliográficos
Autores principales: Kantek, Daniel Luis Zanella, Moreira Peres, Wellington Adriano, Moreira-Filho, Orlando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pensoft Publishers 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387378/
https://www.ncbi.nlm.nih.gov/pubmed/25893072
http://dx.doi.org/10.3897/CompCytogen.v9i1.8488
Descripción
Sumario:Abstract. The catfish family Heptapteridae (order Siluriformes) is endemic to the Neotropics and is one of the most common of the fish families in small bodies of water. Although over 200 species have been identified in this family, very few have been characterized cytogenetically. Here, we analyze the chromosome genomes of four species of Heptapteridae: Cetopsorhamdia iheringi (Schubart & Gomes, 1959), 2n = 58, comprising 28 metacentric (m) + 26 submetacentric (sm) + 4 subtelomeric (st) chromosomes; Pimelodella vittata (Lütken, 1874), 2n = 46, comprising 16m + 22sm + 8st; Rhamdia prope quelen (Quoy & Gaimard, 1824), 2n = 58 comprising 26m + 16sm + 14st + 2 acrocentric; and Rhamdiopsis prope microcephala (Lütken, 1874), 2n = 56, comprising 12m + 30sm + 14st. The nucleolus organizer regions (NORs) were located in a single chromosome pair in all species. The two species that belonged to the subclade Nemuroglanis, Cetopsorhamdia iheringi and Rhamdia prope quelen, had a diploid chromosome number of 58 and an interstitial NOR adjacent to a C(+) block located on one of the larger chromosome pairs in the complement. Our results from conventional cytogenetic techniques in combination with FISH using 18S and 5S rDNA probes corroborated the taxonomical hypothesis for the formation of the Nemuroglanis subclade.