Cargando…
Knowing one's place: a free-energy approach to pattern regulation
Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387527/ https://www.ncbi.nlm.nih.gov/pubmed/25788538 http://dx.doi.org/10.1098/rsif.2014.1383 |
_version_ | 1782365282433499136 |
---|---|
author | Friston, Karl Levin, Michael Sengupta, Biswa Pezzulo, Giovanni |
author_facet | Friston, Karl Levin, Michael Sengupta, Biswa Pezzulo, Giovanni |
author_sort | Friston, Karl |
collection | PubMed |
description | Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization—of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs—and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model—predicting the signals sensed by cells in the target morphology—and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies—that currently focus on molecular pathways—with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics. |
format | Online Article Text |
id | pubmed-4387527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-43875272015-04-16 Knowing one's place: a free-energy approach to pattern regulation Friston, Karl Levin, Michael Sengupta, Biswa Pezzulo, Giovanni J R Soc Interface Research Articles Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization—of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs—and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model—predicting the signals sensed by cells in the target morphology—and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies—that currently focus on molecular pathways—with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics. The Royal Society 2015-04-06 /pmc/articles/PMC4387527/ /pubmed/25788538 http://dx.doi.org/10.1098/rsif.2014.1383 Text en http://creativecommons.org/licenses/by/4.0/ © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Friston, Karl Levin, Michael Sengupta, Biswa Pezzulo, Giovanni Knowing one's place: a free-energy approach to pattern regulation |
title | Knowing one's place: a free-energy approach to pattern regulation |
title_full | Knowing one's place: a free-energy approach to pattern regulation |
title_fullStr | Knowing one's place: a free-energy approach to pattern regulation |
title_full_unstemmed | Knowing one's place: a free-energy approach to pattern regulation |
title_short | Knowing one's place: a free-energy approach to pattern regulation |
title_sort | knowing one's place: a free-energy approach to pattern regulation |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387527/ https://www.ncbi.nlm.nih.gov/pubmed/25788538 http://dx.doi.org/10.1098/rsif.2014.1383 |
work_keys_str_mv | AT fristonkarl knowingonesplaceafreeenergyapproachtopatternregulation AT levinmichael knowingonesplaceafreeenergyapproachtopatternregulation AT senguptabiswa knowingonesplaceafreeenergyapproachtopatternregulation AT pezzulogiovanni knowingonesplaceafreeenergyapproachtopatternregulation |