Cargando…
Mental imagery-induced attention modulates pain perception and cortical excitability
BACKGROUND: Mental imagery is a powerful method of altering brain activity and behavioral outcomes, such as performance of cognition and motor skills. Further, attention and distraction can modulate pain-related neuronal networks and the perception of pain. This exploratory study examined the effect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387598/ https://www.ncbi.nlm.nih.gov/pubmed/25887060 http://dx.doi.org/10.1186/s12868-015-0146-6 |
Sumario: | BACKGROUND: Mental imagery is a powerful method of altering brain activity and behavioral outcomes, such as performance of cognition and motor skills. Further, attention and distraction can modulate pain-related neuronal networks and the perception of pain. This exploratory study examined the effects of mental imagery-induced attention on pressure pain threshold and cortical plasticity using transcranial magnetic stimulation (TMS). This blinded, randomized, and parallel-design trial comprised 30 healthy right-handed male subjects. Exploratory statistical analyses were performed using ANOVA and t-tests for pain and TMS assessments. Pearson’s correlation was used to analyze the association between changes in pain threshold and cortical excitability. RESULTS: In the analysis of pain outcomes, there was no significant interaction effect on pain between group versus time. In an exploratory analysis, we only observed a significant effect of group for the targeted left hand (ANOVA with pain threshold as the dependent variable and time and group as independent variables). Although there was only a within-group effect of mental imagery on pain, further analyses showed a significant positive correlation of changes in pain threshold and cortical excitability (motor-evoked potentials via TMS). CONCLUSIONS: Mental imagery has a minor effect on pain modulation in healthy subjects. Its effects appear to differ compared with chronic pain, leading to a small decrease in pain threshold. Assessments of cortical excitability confirmed that these effects are related to the modulation of pain-related cortical circuits. These exploratory findings suggest that neuronal plasticity is influenced by pain and that the mental imagery effects on pain depend on the state of central sensitization. |
---|