Cargando…

Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR

The extent to which natural polymorphisms in noncoding sequences have functional consequences is still unknown. A large proportion of the natural variation in flowering in Arabidopsis thaliana accessions is due to noncoding cis polymorphisms that define distinct haplotypes of FLOWERING LOCUS C (FLC)...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Peijin, Tao, Zhen, Dean, Caroline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387712/
https://www.ncbi.nlm.nih.gov/pubmed/25805848
http://dx.doi.org/10.1101/gad.258814.115
Descripción
Sumario:The extent to which natural polymorphisms in noncoding sequences have functional consequences is still unknown. A large proportion of the natural variation in flowering in Arabidopsis thaliana accessions is due to noncoding cis polymorphisms that define distinct haplotypes of FLOWERING LOCUS C (FLC). Here, we show that a single natural intronic polymorphism in one haplotype affects FLC expression and thus flowering by specifically changing splicing of the FLC antisense transcript COOLAIR. Altered antisense splicing increases FLC expression via a cotranscriptional mechanism involving capping of the FLC nascent transcript. Single noncoding polymorphisms can therefore be a major contributor to phenotypic evolution through modulation of noncoding transcripts.