Cargando…

Trans-orbital orbitocranial penetrating injury by pointed iron rod

Trans-orbital orbitocranial penetrating injury (TOPI) by a foreign body is an extremely rare compound head injury having a potential to cause major morbidity and mortality. Preoperative radiological imaging by CT scan is very important for operative guidance, but in remote area where CT scan is not...

Descripción completa

Detalles Bibliográficos
Autores principales: Tewari, Vinod Kumar, Dubey, Ram Shringar, Dubey, Gyan Chand
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387818/
https://www.ncbi.nlm.nih.gov/pubmed/25883487
http://dx.doi.org/10.4103/0976-3147.150282
Descripción
Sumario:Trans-orbital orbitocranial penetrating injury (TOPI) by a foreign body is an extremely rare compound head injury having a potential to cause major morbidity and mortality. Preoperative radiological imaging by CT scan is very important for operative guidance, but in remote area where CT scan is not available, the patient is generally referred to tertiary level. Here we present a case which was dealt successfully without CT scan, only on the basis of stable clinical status and X-rays. We present a case of a 35-year-old man who had an accidental injury (fall from height) by rod. Immediate X-ray (anteroposterior and lateral views) revealed that the pointed end of the foreign body (rod) was inside the ipsilateral anterior fossa via basifrontal bone up to frontal vertex, not crossing the midline. CT scan was not available and his vitals with GCS were normal (15/15). He was operated with the help of an ophthalmic surgeon by right frontotemporal craniotomy. The patient was discharged on 10(th) day without any neurological deficit except restricted right eyeball movement to superolateral and ptosis. The restricted eyeball movements recovered after third month of follow up with remnant ptosis for 2 years. This case highlights an unusual case, direct visualization and repair of brain structures with higher antibiotics can save the life even in remote areas where CT scan is still not available only on the basis of stable GCS and X-rays.