Cargando…
Somatostatin Receptor Based Imaging and Radionuclide Therapy
Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387942/ https://www.ncbi.nlm.nih.gov/pubmed/25879040 http://dx.doi.org/10.1155/2015/917968 |
_version_ | 1782365349492031488 |
---|---|
author | Xu, Caiyun Zhang, Hong |
author_facet | Xu, Caiyun Zhang, Hong |
author_sort | Xu, Caiyun |
collection | PubMed |
description | Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. |
format | Online Article Text |
id | pubmed-4387942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43879422015-04-15 Somatostatin Receptor Based Imaging and Radionuclide Therapy Xu, Caiyun Zhang, Hong Biomed Res Int Review Article Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. Hindawi Publishing Corporation 2015 2015-03-24 /pmc/articles/PMC4387942/ /pubmed/25879040 http://dx.doi.org/10.1155/2015/917968 Text en Copyright © 2015 C. Xu and H. Zhang. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Xu, Caiyun Zhang, Hong Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title | Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title_full | Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title_fullStr | Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title_full_unstemmed | Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title_short | Somatostatin Receptor Based Imaging and Radionuclide Therapy |
title_sort | somatostatin receptor based imaging and radionuclide therapy |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387942/ https://www.ncbi.nlm.nih.gov/pubmed/25879040 http://dx.doi.org/10.1155/2015/917968 |
work_keys_str_mv | AT xucaiyun somatostatinreceptorbasedimagingandradionuclidetherapy AT zhanghong somatostatinreceptorbasedimagingandradionuclidetherapy |