Cargando…

Comparative Analysis of Anterior Segment Parameters in Normal and Keratoconus Eyes Generated by Scheimpflug Tomography

Purpose. To assess and compare the anterior and posterior corneal surface parameters, keratoconus indices, thickness profile data, and data from enhanced elevation maps of keratoconic and normal corneas with the Pentacam Scheimpflug corneal tomography and to determine the sensitivity and specificity...

Descripción completa

Detalles Bibliográficos
Autores principales: Orucoglu, Faik, Toker, Ebru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388013/
https://www.ncbi.nlm.nih.gov/pubmed/25878897
http://dx.doi.org/10.1155/2015/925414
Descripción
Sumario:Purpose. To assess and compare the anterior and posterior corneal surface parameters, keratoconus indices, thickness profile data, and data from enhanced elevation maps of keratoconic and normal corneas with the Pentacam Scheimpflug corneal tomography and to determine the sensitivity and specificity of these parameters in discriminating keratoconus from normal eyes. Methods. The study included 656 keratoconus eyes and 515 healthy eyes with a mean age of 30.95 ± 9.25 and 32.90 ± 14.78 years, respectively. Forty parameters obtained from the Pentacam tomography were assessed by the receiver operating characteristic curve analysis for their efficiency. Results. Receiver operating characteristic curve analyses showed excellent predictive accuracy (area under the curve, ranging from 0.914 to 0.972) for 21 of the 40 parameters evaluated. Among all parameters indices of vertical asymmetry, keratoconus index, front elevation at thinnest location, back elevation at thinnest location, Ambrósio Relational Thickness (ARTmax), deviation of average pachymetric progression, deviation of ARTmax, and total deviation showed excellent (>90%) sensitivity and specificity in addition to excellent area under the receiver operating characteristic curve (AUROC). Conclusions. Parameters derived from the topometric and Belin-Ambrósio enhanced ectasia display maps very effectively discriminate keratoconus from normal corneas with excellent sensitivity and specificity.