Cargando…
A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)(2)PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input featur...
Autores principales: | Guo, Zhiqiang, Wang, Huaiqing, Yang, Jie, Miller, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388524/ https://www.ncbi.nlm.nih.gov/pubmed/25849483 http://dx.doi.org/10.1371/journal.pone.0122385 |
Ejemplares similares
-
Integration of genetic algorithm with artificial neural network for stock market forecasting
por: Sharma, Dinesh K., et al.
Publicado: (2021) -
Housing market forecasts via stock market indicators
por: Mittal, Varun, et al.
Publicado: (2023) -
Stock price prediction using principal components
por: Ghorbani, Mahsa, et al.
Publicado: (2020) -
Forecasting China’s stock market risk under the background of the Stock Connect programs
por: Chen, Wei, et al.
Publicado: (2023) -
COVID-19 forecasts via stock market indicators
por: Liang, Yi, et al.
Publicado: (2022)