Cargando…
Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans
Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selecti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388690/ https://www.ncbi.nlm.nih.gov/pubmed/25849546 http://dx.doi.org/10.1371/journal.pone.0121557 |
_version_ | 1782365426853871616 |
---|---|
author | Amorim, Carlos Eduardo G. Daub, Josephine T. Salzano, Francisco M. Foll, Matthieu Excoffier, Laurent |
author_facet | Amorim, Carlos Eduardo G. Daub, Josephine T. Salzano, Francisco M. Foll, Matthieu Excoffier, Laurent |
author_sort | Amorim, Carlos Eduardo G. |
collection | PubMed |
description | Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures. |
format | Online Article Text |
id | pubmed-4388690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43886902015-04-21 Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans Amorim, Carlos Eduardo G. Daub, Josephine T. Salzano, Francisco M. Foll, Matthieu Excoffier, Laurent PLoS One Research Article Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures. Public Library of Science 2015-04-07 /pmc/articles/PMC4388690/ /pubmed/25849546 http://dx.doi.org/10.1371/journal.pone.0121557 Text en © 2015 Amorim et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Amorim, Carlos Eduardo G. Daub, Josephine T. Salzano, Francisco M. Foll, Matthieu Excoffier, Laurent Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title | Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title_full | Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title_fullStr | Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title_full_unstemmed | Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title_short | Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans |
title_sort | detection of convergent genome-wide signals of adaptation to tropical forests in humans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388690/ https://www.ncbi.nlm.nih.gov/pubmed/25849546 http://dx.doi.org/10.1371/journal.pone.0121557 |
work_keys_str_mv | AT amorimcarloseduardog detectionofconvergentgenomewidesignalsofadaptationtotropicalforestsinhumans AT daubjosephinet detectionofconvergentgenomewidesignalsofadaptationtotropicalforestsinhumans AT salzanofranciscom detectionofconvergentgenomewidesignalsofadaptationtotropicalforestsinhumans AT follmatthieu detectionofconvergentgenomewidesignalsofadaptationtotropicalforestsinhumans AT excoffierlaurent detectionofconvergentgenomewidesignalsofadaptationtotropicalforestsinhumans |