Cargando…
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and eve...
Autores principales: | Giguère, Sébastien, Laviolette, François, Marchand, Mario, Tremblay, Denise, Moineau, Sylvain, Liang, Xinxia, Biron, Éric, Corbeil, Jacques |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388847/ https://www.ncbi.nlm.nih.gov/pubmed/25849257 http://dx.doi.org/10.1371/journal.pcbi.1004074 |
Ejemplares similares
-
Learning a peptide-protein binding affinity predictor with kernel ridge regression
por: Giguère, Sébastien, et al.
Publicado: (2013) -
Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
por: Drouin, Alexandre, et al.
Publicado: (2016) -
HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels
por: Boisvert, Sébastien, et al.
Publicado: (2008) -
Interpretable genotype-to-phenotype classifiers with performance guarantees
por: Drouin, Alexandre, et al.
Publicado: (2019) -
Complete Genome Sequence of Streptococcus thermophilus SMQ-301, a Model Strain for Phage-Host Interactions
por: Labrie, Simon J., et al.
Publicado: (2015)