Cargando…
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentatio...
Autores principales: | Maji, Pradipta, Roy, Shaswati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388859/ https://www.ncbi.nlm.nih.gov/pubmed/25848961 http://dx.doi.org/10.1371/journal.pone.0123677 |
Ejemplares similares
-
Correction: Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Publicado: (2015) -
Multispectral co-occurrence of wavelet coefficients for malignancy assessment of brain tumors
por: Roy, Shaswati, et al.
Publicado: (2021) -
Rough-fuzzy pattern recognition: applications in bioinformatics and medical imaging
por: Maji, Pradipta, et al.
Publicado: (2012) -
Wavelet Transform Fuzzy Algorithms for Dermoscopic Image Segmentation
por: Castillejos, Heydy, et al.
Publicado: (2012) -
Computational intelligence and feature selection: rough and fuzzy approaches
por: Jensen, Richard, et al.
Publicado: (2008)