Cargando…

Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community

Heterotrophic plate counts (HPC) are routinely determined within the scope of water quality assessment. However, variable HPC methods with different cultivation parameters (i.e., temperature and media type) are applied, which could lead to significant effects in the outcome of the analysis. Therefor...

Descripción completa

Detalles Bibliográficos
Autores principales: Gensberger, Eva Theres, Gössl, Eva-Maria, Antonielli, Livio, Sessitsch, Angela, Kostić, Tanja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389272/
https://www.ncbi.nlm.nih.gov/pubmed/25861554
http://dx.doi.org/10.7717/peerj.862
Descripción
Sumario:Heterotrophic plate counts (HPC) are routinely determined within the scope of water quality assessment. However, variable HPC methods with different cultivation parameters (i.e., temperature and media type) are applied, which could lead to significant effects in the outcome of the analysis. Therefore the effect of different HPC methods, according to DIN EN ISO 6222 and EPA, on the culturable microbial community composition was investigated by 16S rRNA gene sequence analysis and statistical evaluation was performed. The culturable community composition revealed significant effects assigned to temperature (p < 0.01), while for media type no statistical significance was observed. However, the abundance of certain detected bacteria was affected. Lower temperature (22 °C) showed the abundance of naturally occurring Pseudomonadaceae and Aeromonadaceae, whereas at high temperature (37 °C) numerous Enterobacteriaceae, Citrobacter spp. and Bacilli were identified. The highest biodiversity was detected at lower temperature, especially on R2A medium. These results indicate that different temperatures (low and high) should be included into HPC measurement and selection of media should, ideally, be adjusted to the monitored water source. Accordingly, it can be inferred that the HPC method is more suitable for continuous monitoring of the same water source than for single assessments of a water sample.