Cargando…

Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii)

Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Moya M., Johanson, Zerina, Butts, Thomas, Ericsson, Rolf, Modrell, Melinda, Tulenko, Frank J., Davis, Marcus C., Fraser, Gareth J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389609/
https://www.ncbi.nlm.nih.gov/pubmed/25788604
http://dx.doi.org/10.1098/rspb.2014.2700
Descripción
Sumario:Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding.