Cargando…
The Regulatory Role of MicroRNAs in EMT and Cancer
The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is no...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389820/ https://www.ncbi.nlm.nih.gov/pubmed/25883654 http://dx.doi.org/10.1155/2015/865816 |
_version_ | 1782365617711480832 |
---|---|
author | Zaravinos, Apostolos |
author_facet | Zaravinos, Apostolos |
author_sort | Zaravinos, Apostolos |
collection | PubMed |
description | The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is now well known that miRNAs are important regulators of malignant transformation and metastasis. The aberrant expression of the miR-200 family in cancer and its involvement in the initiation and progression of malignant transformation has been well demonstrated. The metastasis suppressive role of the miR-200 members is strongly associated with a pathologic EMT. This review describes the most recent advances regarding the influence of miRNAs in EMT and the control they exert in major signaling pathways in various cancers. The ability of the autocrine TGF-β/ZEB/miR-200 signaling regulatory network to control cell plasticity between the epithelial and mesenchymal state is further discussed. Various miRNAs are reported to directly target EMT transcription factors and components of the cell architecture, as well as miRNAs that are able to reverse the EMT process by targeting the Notch and Wnt signaling pathways. The link between cancer stem cells and EMT is also reported and the most recent developments regarding clinical trials that are currently using anti-miRNA constructs are further discussed. |
format | Online Article Text |
id | pubmed-4389820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43898202015-04-16 The Regulatory Role of MicroRNAs in EMT and Cancer Zaravinos, Apostolos J Oncol Review Article The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is now well known that miRNAs are important regulators of malignant transformation and metastasis. The aberrant expression of the miR-200 family in cancer and its involvement in the initiation and progression of malignant transformation has been well demonstrated. The metastasis suppressive role of the miR-200 members is strongly associated with a pathologic EMT. This review describes the most recent advances regarding the influence of miRNAs in EMT and the control they exert in major signaling pathways in various cancers. The ability of the autocrine TGF-β/ZEB/miR-200 signaling regulatory network to control cell plasticity between the epithelial and mesenchymal state is further discussed. Various miRNAs are reported to directly target EMT transcription factors and components of the cell architecture, as well as miRNAs that are able to reverse the EMT process by targeting the Notch and Wnt signaling pathways. The link between cancer stem cells and EMT is also reported and the most recent developments regarding clinical trials that are currently using anti-miRNA constructs are further discussed. Hindawi Publishing Corporation 2015 2015-03-25 /pmc/articles/PMC4389820/ /pubmed/25883654 http://dx.doi.org/10.1155/2015/865816 Text en Copyright © 2015 Apostolos Zaravinos. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Zaravinos, Apostolos The Regulatory Role of MicroRNAs in EMT and Cancer |
title | The Regulatory Role of MicroRNAs in EMT and Cancer |
title_full | The Regulatory Role of MicroRNAs in EMT and Cancer |
title_fullStr | The Regulatory Role of MicroRNAs in EMT and Cancer |
title_full_unstemmed | The Regulatory Role of MicroRNAs in EMT and Cancer |
title_short | The Regulatory Role of MicroRNAs in EMT and Cancer |
title_sort | regulatory role of micrornas in emt and cancer |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389820/ https://www.ncbi.nlm.nih.gov/pubmed/25883654 http://dx.doi.org/10.1155/2015/865816 |
work_keys_str_mv | AT zaravinosapostolos theregulatoryroleofmicrornasinemtandcancer AT zaravinosapostolos regulatoryroleofmicrornasinemtandcancer |