Cargando…

Fractal Dimensions of In Vitro Tumor Cell Proliferation

Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lambrou, George I., Zaravinos, Apostolos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389830/
https://www.ncbi.nlm.nih.gov/pubmed/25883653
http://dx.doi.org/10.1155/2015/698760
_version_ 1782365619951239168
author Lambrou, George I.
Zaravinos, Apostolos
author_facet Lambrou, George I.
Zaravinos, Apostolos
author_sort Lambrou, George I.
collection PubMed
description Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases.
format Online
Article
Text
id pubmed-4389830
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-43898302015-04-16 Fractal Dimensions of In Vitro Tumor Cell Proliferation Lambrou, George I. Zaravinos, Apostolos J Oncol Research Article Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases. Hindawi Publishing Corporation 2015 2015-03-25 /pmc/articles/PMC4389830/ /pubmed/25883653 http://dx.doi.org/10.1155/2015/698760 Text en Copyright © 2015 G. I. Lambrou and A. Zaravinos. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lambrou, George I.
Zaravinos, Apostolos
Fractal Dimensions of In Vitro Tumor Cell Proliferation
title Fractal Dimensions of In Vitro Tumor Cell Proliferation
title_full Fractal Dimensions of In Vitro Tumor Cell Proliferation
title_fullStr Fractal Dimensions of In Vitro Tumor Cell Proliferation
title_full_unstemmed Fractal Dimensions of In Vitro Tumor Cell Proliferation
title_short Fractal Dimensions of In Vitro Tumor Cell Proliferation
title_sort fractal dimensions of in vitro tumor cell proliferation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389830/
https://www.ncbi.nlm.nih.gov/pubmed/25883653
http://dx.doi.org/10.1155/2015/698760
work_keys_str_mv AT lambrougeorgei fractaldimensionsofinvitrotumorcellproliferation
AT zaravinosapostolos fractaldimensionsofinvitrotumorcellproliferation