Cargando…

The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria

Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zorz, Jackie K., Allanach, Jessica R., Murphy, Cole D., Roodvoets, Mitchell S., Campbell, Douglas A., Cockshutt, Amanda M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390859/
https://www.ncbi.nlm.nih.gov/pubmed/25658887
http://dx.doi.org/10.3390/life5010403
_version_ 1782365739212079104
author Zorz, Jackie K.
Allanach, Jessica R.
Murphy, Cole D.
Roodvoets, Mitchell S.
Campbell, Douglas A.
Cockshutt, Amanda M.
author_facet Zorz, Jackie K.
Allanach, Jessica R.
Murphy, Cole D.
Roodvoets, Mitchell S.
Campbell, Douglas A.
Cockshutt, Amanda M.
author_sort Zorz, Jackie K.
collection PubMed
description Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b(6)f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b(6)f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b(6)f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain.
format Online
Article
Text
id pubmed-4390859
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-43908592015-05-21 The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria Zorz, Jackie K. Allanach, Jessica R. Murphy, Cole D. Roodvoets, Mitchell S. Campbell, Douglas A. Cockshutt, Amanda M. Life (Basel) Article Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b(6)f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b(6)f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b(6)f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain. MDPI 2015-02-04 /pmc/articles/PMC4390859/ /pubmed/25658887 http://dx.doi.org/10.3390/life5010403 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zorz, Jackie K.
Allanach, Jessica R.
Murphy, Cole D.
Roodvoets, Mitchell S.
Campbell, Douglas A.
Cockshutt, Amanda M.
The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title_full The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title_fullStr The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title_full_unstemmed The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title_short The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
title_sort rubisco to photosystem ii ratio limits the maximum photosynthetic rate in picocyanobacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390859/
https://www.ncbi.nlm.nih.gov/pubmed/25658887
http://dx.doi.org/10.3390/life5010403
work_keys_str_mv AT zorzjackiek therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT allanachjessicar therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT murphycoled therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT roodvoetsmitchells therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT campbelldouglasa therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT cockshuttamandam therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT zorzjackiek rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT allanachjessicar rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT murphycoled rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT roodvoetsmitchells rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT campbelldouglasa rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria
AT cockshuttamandam rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria