Cargando…
The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria
Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390859/ https://www.ncbi.nlm.nih.gov/pubmed/25658887 http://dx.doi.org/10.3390/life5010403 |
_version_ | 1782365739212079104 |
---|---|
author | Zorz, Jackie K. Allanach, Jessica R. Murphy, Cole D. Roodvoets, Mitchell S. Campbell, Douglas A. Cockshutt, Amanda M. |
author_facet | Zorz, Jackie K. Allanach, Jessica R. Murphy, Cole D. Roodvoets, Mitchell S. Campbell, Douglas A. Cockshutt, Amanda M. |
author_sort | Zorz, Jackie K. |
collection | PubMed |
description | Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b(6)f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b(6)f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b(6)f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain. |
format | Online Article Text |
id | pubmed-4390859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-43908592015-05-21 The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria Zorz, Jackie K. Allanach, Jessica R. Murphy, Cole D. Roodvoets, Mitchell S. Campbell, Douglas A. Cockshutt, Amanda M. Life (Basel) Article Marine Synechococcus and Prochlorococcus are picocyanobacteria predominating in subtropical, oligotrophic marine environments, a niche predicted to expand with climate change. When grown under common low light conditions Synechococcus WH 8102 and Prochlorococcus MED 4 show similar Cytochrome b(6)f and Photosystem I contents normalized to Photosystem II content, while Prochlorococcus MIT 9313 has twice the Cytochrome b(6)f content and four times the Photosystem I content of the other strains. Interestingly, the Prochlorococcus strains contain only one third to one half of the RUBISCO catalytic subunits compared to the marine Synechococcus strain. The maximum Photosystem II electron transport rates were similar for the two Prochlorococcus strains but higher for the marine Synechococcus strain. Photosystem II electron transport capacity is highly correlated to the molar ratio of RUBISCO active sites to Photosystem II but not to the ratio of cytochrome b(6)f to Photosystem II, nor to the ratio of Photosystem I: Photosystem II. Thus, the catalytic capacity for the rate-limiting step of carbon fixation, the ultimate electron sink, appears to limit electron transport rates. The high abundance of Cytochrome b(6)f and Photosystem I in MIT 9313, combined with the slower flow of electrons away from Photosystem II and the relatively low level of RUBISCO, are consistent with cyclic electron flow around Photosystem I in this strain. MDPI 2015-02-04 /pmc/articles/PMC4390859/ /pubmed/25658887 http://dx.doi.org/10.3390/life5010403 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zorz, Jackie K. Allanach, Jessica R. Murphy, Cole D. Roodvoets, Mitchell S. Campbell, Douglas A. Cockshutt, Amanda M. The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title | The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title_full | The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title_fullStr | The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title_full_unstemmed | The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title_short | The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria |
title_sort | rubisco to photosystem ii ratio limits the maximum photosynthetic rate in picocyanobacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390859/ https://www.ncbi.nlm.nih.gov/pubmed/25658887 http://dx.doi.org/10.3390/life5010403 |
work_keys_str_mv | AT zorzjackiek therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT allanachjessicar therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT murphycoled therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT roodvoetsmitchells therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT campbelldouglasa therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT cockshuttamandam therubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT zorzjackiek rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT allanachjessicar rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT murphycoled rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT roodvoetsmitchells rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT campbelldouglasa rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria AT cockshuttamandam rubiscotophotosystemiiratiolimitsthemaximumphotosyntheticrateinpicocyanobacteria |