Cargando…

Algorithmic Mechanisms for Reliable Crowdsourcing Computation under Collusion

We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers’ decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández Anta, Antonio, Georgiou, Chryssis, Mosteiro, Miguel A., Pareja, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391324/
https://www.ncbi.nlm.nih.gov/pubmed/25793524
http://dx.doi.org/10.1371/journal.pone.0116520
Descripción
Sumario:We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers’ decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.