Cargando…
Bayesian LASSO, Scale Space and Decision Making in Association Genetics
BACKGROUND: LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four pro...
Autores principales: | Pasanen, Leena, Holmström, Lasse, Sillanpää, Mikko J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391919/ https://www.ncbi.nlm.nih.gov/pubmed/25856391 http://dx.doi.org/10.1371/journal.pone.0120017 |
Ejemplares similares
-
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
por: Mathew, Boby, et al.
Publicado: (2022) -
MCPeSe: Monte Carlo penalty selection for graphical lasso
por: Kuismin, Markku, et al.
Publicado: (2020) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Logistic Bayesian LASSO for Genetic Association Analysis of Data from Complex Sampling Designs
por: Zhang, Yuan, et al.
Publicado: (2017) -
Evaluation of logistic Bayesian LASSO for identifying association with rare haplotypes
por: Biswas, Swati, et al.
Publicado: (2014)