Cargando…
Kinetic Characterization and Effect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugarcane Juice
A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were invest...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392994/ https://www.ncbi.nlm.nih.gov/pubmed/25969764 http://dx.doi.org/10.1155/2014/178498 |
Sumario: | A thermostable β-glucosidase was effectively immobilized on alginate by the method of gel entrapment. After optimization of immobilized conditions, recovered enzyme activity was 60%. Optimum pH, temperature, kinetic parameters, thermal and pH stability, reusability, and storage stability were investigated. The K (m) and V (max) for immobilized β-glucosidase were estimated to be 5.0 mM and 0.64 U/ml, respectively. When comparing, free and immobilized enzyme, change was observed in optimum pH and temperature from 5.0 to 6.0 and 60°C to 80°C, respectively. Immobilized enzyme showed an increase in pH stability over the studied pH range (3.0–10.0) and stability at temperature up to 80°C. The storage stability and reusability of the immobilized β-glucosidase were improved significantly, with 12.09% activity retention at 30°C after being stored for 25 d and 17.85% residual activity after being repeatedly used for 4 times. The effect of both free and immobilized β-glucosidase enzyme on physicochemical properties of sugarcane juice was also analyzed. |
---|