Cargando…

Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining

Intensity-controlled (relative to VO(2max)) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c-kit(pos) cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training-induced adaptations pers...

Descripción completa

Detalles Bibliográficos
Autores principales: Waring, Cheryl D, Henning, Beverley J, Smith, Andrew J, Nadal-Ginard, Bernardo, Torella, Daniele, Ellison, Georgina M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393210/
https://www.ncbi.nlm.nih.gov/pubmed/25713328
http://dx.doi.org/10.14814/phy2.12302
Descripción
Sumario:Intensity-controlled (relative to VO(2max)) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c-kit(pos) cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training-induced adaptations persist following detraining is undetermined. Twelve male Wistar rats (∼230 g) were exercised at 80–85% of their VO(2max) for 30 min day(−1), 4 days week(−1) for 4 weeks (TR;n = 6), followed by 4 weeks of detraining (DTR; n = 6). Twelve untrained rats acted as controls (CTRL). Exercise training significantly enhanced VO(2max) (11.34 mL kg(−1) min(−1)) and wet heart weight (29%) above CTRL (P < 0.05). Echocardiography revealed that exercise training increased LV mass (∼32%), posterior and septal wall thickness (∼15%), ejection fraction and fractional shortening (∼10%) compared to CTRL (P < 0.05). Cardiomyocyte diameter (17.9 ± 0.1 μm vs. 14.9 ± 0.6 μm), newly formed (BrdU(pos)/Ki67(pos)) cardiomyocytes (7.2 ± 1.3%/1.9 ± 0.7% vs. 0.2 ± 0.1%/0.1 ± 0.1%), total cardiomyocyte number (45.6 ± 0.6 × 10(6) vs. 42.5 ± 0.4 × 10(6)), c-kit(pos) eCSC number (884 ± 112 per 10(6) cardiomyocytes vs. 482 ± 132 per 10(6) cardiomyocytes), and capillary density (4123 ± 227 per mm(2) vs. 2117 ± 118 per mm(2)) were significantly greater in the LV of trained animals (P < 0.05) than CTRL. Detraining removed the stimulus for c-kit(pos) eCSC activation (640 ± 98 per 10(6) cardiomyocytes) and resultant cardiomyocyte hyperplasia (0.4 ± 0.3% BrdU(pos)/0.2 ± 0.2% Ki67(pos) cardiomyocytes). Capillary density (3673 ± 374 per mm(2)) and total myocyte number (44.7 ± 0.5 × 10(6)) remained elevated following detraining, but cardiomyocyte hypertrophy (15.0 ± 0.4 μm) was lost, resulting in a reduction of anatomical (wall thickness ∼4%; LV mass ∼10% and cardiac mass ∼8%, above CTRL) and functional (EF & FS ∼2% above CTRL) parameters gained through exercise training. These findings demonstrate that cardiac adaptations, produced by 4 weeks of intensity-controlled exercise training are lost after a similar period of detraining.