Cargando…
Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers
The combination of light and photosensitizers for phototherapeutic interventions such as photodynamic therapy has transformed medicine and biology. However, the shallow penetration of light in tissues and the reliance on tissue oxygenation to generate cytotoxic radicals have limited the method to su...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393353/ https://www.ncbi.nlm.nih.gov/pubmed/25751304 http://dx.doi.org/10.1038/nnano.2015.17 |
_version_ | 1782366152646721536 |
---|---|
author | Kotagiri, Nalinikanth Sudlow, Gail P. Akers, Walter J. Achilefu, Samuel |
author_facet | Kotagiri, Nalinikanth Sudlow, Gail P. Akers, Walter J. Achilefu, Samuel |
author_sort | Kotagiri, Nalinikanth |
collection | PubMed |
description | The combination of light and photosensitizers for phototherapeutic interventions such as photodynamic therapy has transformed medicine and biology. However, the shallow penetration of light in tissues and the reliance on tissue oxygenation to generate cytotoxic radicals have limited the method to superficial or endoscope-accessible lesions. Here, we report a way to overcome these limitations by using Cerenkov radiation from radionuclides to activate an oxygen-independent nanophotosensitizer, titanium dioxide (TiO(2)). We show that administration of transferrin-coated TiO(2) nanoparticles and clinical grade radionuclides in mice and co-localization in tumours resulted in either complete tumour remission or increased their median survival. Histological analysis of tumour sections showed selective destruction of cancerous cells and high numbers of tumour infiltrating lymphocytes, suggesting that both free radicals and the activation of the immune system mediated the destruction. Our results offer a way to harness low radiance-sensitive nanophotosensitizers to achieve depth-independent Cerenkov radiation-mediated therapy. |
format | Online Article Text |
id | pubmed-4393353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-43933532015-11-01 Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers Kotagiri, Nalinikanth Sudlow, Gail P. Akers, Walter J. Achilefu, Samuel Nat Nanotechnol Article The combination of light and photosensitizers for phototherapeutic interventions such as photodynamic therapy has transformed medicine and biology. However, the shallow penetration of light in tissues and the reliance on tissue oxygenation to generate cytotoxic radicals have limited the method to superficial or endoscope-accessible lesions. Here, we report a way to overcome these limitations by using Cerenkov radiation from radionuclides to activate an oxygen-independent nanophotosensitizer, titanium dioxide (TiO(2)). We show that administration of transferrin-coated TiO(2) nanoparticles and clinical grade radionuclides in mice and co-localization in tumours resulted in either complete tumour remission or increased their median survival. Histological analysis of tumour sections showed selective destruction of cancerous cells and high numbers of tumour infiltrating lymphocytes, suggesting that both free radicals and the activation of the immune system mediated the destruction. Our results offer a way to harness low radiance-sensitive nanophotosensitizers to achieve depth-independent Cerenkov radiation-mediated therapy. 2015-03-09 2015-04 /pmc/articles/PMC4393353/ /pubmed/25751304 http://dx.doi.org/10.1038/nnano.2015.17 Text en Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/ |
spellingShingle | Article Kotagiri, Nalinikanth Sudlow, Gail P. Akers, Walter J. Achilefu, Samuel Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title | Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title_full | Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title_fullStr | Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title_full_unstemmed | Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title_short | Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers |
title_sort | breaking the depth dependency of phototherapy with cerenkov radiation and low radiance responsive nanophotosensitizers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393353/ https://www.ncbi.nlm.nih.gov/pubmed/25751304 http://dx.doi.org/10.1038/nnano.2015.17 |
work_keys_str_mv | AT kotagirinalinikanth breakingthedepthdependencyofphototherapywithcerenkovradiationandlowradianceresponsivenanophotosensitizers AT sudlowgailp breakingthedepthdependencyofphototherapywithcerenkovradiationandlowradianceresponsivenanophotosensitizers AT akerswalterj breakingthedepthdependencyofphototherapywithcerenkovradiationandlowradianceresponsivenanophotosensitizers AT achilefusamuel breakingthedepthdependencyofphototherapywithcerenkovradiationandlowradianceresponsivenanophotosensitizers |