Cargando…

A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes

We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorda, Antonius, Schürrer, Ferdinand
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394148/
https://www.ncbi.nlm.nih.gov/pubmed/25892748
http://dx.doi.org/10.1016/j.jcp.2014.12.026
Descripción
Sumario:We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.