Cargando…
Automatic interactive optimization for volumetric modulated arc therapy planning
BACKGROUND: Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394415/ https://www.ncbi.nlm.nih.gov/pubmed/25885689 http://dx.doi.org/10.1186/s13014-015-0388-6 |
Sumario: | BACKGROUND: Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed to automate the manual interactive process for the Eclipse treatment planning system. We describe AIO and present initial evaluation data. METHODS: Our current institutional volumetric modulated arc therapy (RapidArc) planning approach for head and neck tumors places 3-4 adjustable OAR optimization objectives along the dose-volume histogram (DVH) curve that is displayed in the optimization window. AIO scans this window and uses color-coding to differentiate between the DVH-lines, allowing it to automatically adjust the location of the optimization objectives frequently and in a more consistent fashion. We compared RapidArc AIO plans (using 9 optimization objectives per OAR) with the clinical plans of 10 patients, and evaluated optimal AIO settings. AIO consistency was tested by replanning a single patient 5 times. RESULTS: Average V95&V107 of the boost planning target volume (PTV) and V95 of the elective PTV differed by ≤0.5%, while average elective PTV V107 improved by 1.5%. Averaged over all patients, AIO reduced mean doses to individual salivary structures by 0.9-1.6Gy and provided mean dose reductions of 5.6Gy and 3.9Gy to the composite swallowing structures and oral cavity, respectively. Re-running AIO five times, resulted in the aforementioned parameters differing by less than 3%. CONCLUSIONS: Using the same planning strategy as manually optimized head and neck plans, AIO can automate the interactive Eclipse treatment planning process and deliver dosimetric improvements over existing clinical plans. |
---|