Cargando…

The Role of Hypoxia-Induced miR-210 in Cancer Progression

Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Kyvan, Myers, Kenneth A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394536/
https://www.ncbi.nlm.nih.gov/pubmed/25809609
http://dx.doi.org/10.3390/ijms16036353
Descripción
Sumario:Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor development, highlights the importance of hypoxia-induced miRs as targets for continued investigation. miRs are short, non-coding transcripts involved in gene expression and regulation. Under hypoxic conditions, miR-210 becomes highly upregulated in response to hypoxia inducing factors (HIFs). HIF-1α drives miR-210’s overexpression and the resultant alteration of cellular processes, including cell cycle regulation, mitochondria function, apoptosis, angiogenesis and metastasis. Here we discuss hypoxia-induced dysregulation of miR-210 and the resultant changes in miR-210 protein targets that regulate cancer progression. Potential methods of targeting miR-210 as a therapeutic tool are also explored.