Cargando…

Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress

Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-li...

Descripción completa

Detalles Bibliográficos
Autor principal: Gary, S. Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394681/
https://www.ncbi.nlm.nih.gov/pubmed/25848081
http://dx.doi.org/10.1098/rsta.2014.0149
Descripción
Sumario:Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. Temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius. The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.